We have prepared a family of peptide fragments of the 64 amino acid protein chymotrypsin inhibitor (CI2), corresponding to progressive elongation from the N terminus, in order to elucidate the basis of conformational preferences in single-domain proteins and to obtain insights into their conformational pathway. Structural analysis of the fragment comprising the first 50 residues, CI2(1-50), indicates that it is mainly disordered, with patches of hydrophobic residues exposed to the solvent. Structural characterisation of the fragment CI2(1-63) which lacks only the C-terminal glycine, Gly64, shows native-like structure in all regions of the fragment. The study provides insights into the contribution of specific residues to the stability and co-operativity of the intact protein. We define a phiNMR value, derived from chemical shift analysis, which describes the build-up of structure at the level of individual residues (protons). All the macroscopic probes used to study the growth of structure in CI2 on elongation of the chain (circular dichroism, fluorescence and gel filtration) are in agreement with the residue-by-residue description by NMR. It is seen that secondary and tertiary structure build up in parallel in the fragments and show similar structures to those developed in the transition state for folding of the intact protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.1997.0932 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!