Pleckstrin homology (PH) domains comprised of loosely conserved sequences of approximately 100 amino acid residues are a functional protein motif found in many signal-transducing and cytoskeletal proteins. We recently demonstrated that the PH domains of Tec family protein-tyrosine kinases Btk and Emt (equal to Itk and Tsk) interact with protein kinase C (PKC) and that PKC down-regulates Btk by phosphorylation. In this study we have characterized the PKC-BtkPH domain interaction in detail. Using pure PKC preparations, it was shown that the Btk PH domain interacts with PKC with high affinity (KD = 39 nM). Unlike other tested phospholipids, phosphatidylinositol 4,5-bisphosphate, which binds to several PH domains, competed with PKC for binding to the PH domain apparently because their binding sites on the amino-terminal portion of the PH domains overlap. The minimal PKC-binding sequence within the Btk PH domain was found to correspond roughly to the second and third beta-sheets of the PH domains of known tertiary structures. On the other hand, the C1 regulatory region of PKCepsilon containing the pseudosubstrate and zinc finger-like sequences was found to be sufficient for strong binding to the Btk PH domain. Phorbol 12-myristate 13-acetate (PMA), a potent activator of PKC that interacts with the C1 region of PKC, inhibited the PKC-PH domain interaction, whereas the bioinactive PMA (4-alpha-PMA) was ineffective. The zeta isoform of PKC, which has a single zinc finger-like motif instead of the two tandem zinc finger-like sequences present in conventional and novel PKC isoforms, does not bind PMA. Thus, as expected, PH domain binding with PKCzeta was not interfered with by PMA. Further, inhibitors that are known to attack the catalytic domains of serine/threonine kinases did not affect this PKC-PH domain interaction. In contrast, the presence of physiological concentrations of Ca2+ induced less than a 2-fold increase in PKC-PH domain binding. These results indicate that PKC binding to PH domains involve the beta2-beta3 region of the Btk PH domain and the C1 region of PKC, and agents that interact with either of these regions (i.e. phosphatidylinositol 4,5-bisphosphate binding to the PH domain and PMA binding to the C1 region of PKC) might act to regulate PKC-PH domain binding.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.20.13033DOI Listing

Publication Analysis

Top Keywords

btk domain
16
domain binding
16
pkc-ph domain
16
phosphatidylinositol 45-bisphosphate
12
pkc
12
domain
12
domain interaction
12
zinc finger-like
12
region pkc
12
binding
9

Similar Publications

Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) treatment has undergone a significant evolution with a shift from historical chemotherapeutic regimens to targeted therapies such as Bruton tyrosine kinase (BTK) and BCL-2 inhibitors. These advancements have been associated with a notable improvement in survival rates with a transformation of CLL into a chronic and manageable condition for most persons with this disease. However, as a consequence of improved outcomes, long-term CLL survivors now face emergent challenges which include a risk of infections, cardiovascular complications, and secondary malignancies.

View Article and Find Full Text PDF

ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.

View Article and Find Full Text PDF

Dorzolamide intermediates with potential anti-inflammatory activity.

Eur J Pharmacol

January 2025

Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India. Electronic address:

Dorzolamide (DZD), a Carbonic anhydrase (CA) inhibitor clinically used to lower intraocular pressure, exhibits anti-inflammatory effects owing to the drug's ability to inhibit the TIR domain-containing adaptor protein (TIRAP)-mediated signalling in macrophages. Here, we investigated whether DZD intermediates also demonstrate any anti-inflammatory property like DZD but with a reduced inhibition of CA. We found that several intermediates of DZD show increased binding to TIRAP at the common interface of kinases, such as Protein kinase C-delta (PKCδ) and Bruton's tyrosine kinase (BTK).

View Article and Find Full Text PDF
Article Synopsis
  • The NLRP3 inflammasome plays a key role in various inflammatory diseases such as cancer and diabetes, making it an important target for treatment.
  • Bruton's tyrosine kinase (BTK) is essential for regulating the NLRP3 inflammasome, and inhibiting BTK with the drug ibrutinib can reduce inflammation.
  • Researchers are exploring new anti-inflammatory compounds and have discovered 5,6,7,8-tetrahydropteridines as promising candidates for further medicinal chemistry studies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!