Evidence for tissue-associated alpha(2) macroglobulin in mouse skeletal muscle.

Mol Chem Neuropathol

Departement of Cardiovascular Sciences, University "La Sapienza," Rome, Italy.

Published: April 1996

Alpha(2)-Macroglobulin (alpha(2)M), a major serum protease inhibitor, was localized in mouse skeletal muscle by immunoperoxidase histochemistry. In all muscles examined (mm. soleus, plantaris, and extensor digitorum longus) specific immunoreactivity occurred diffusely in extracellular structures (periendomysium, blood vessel wall) as well as inside about a half of the muscle fibers. This localization pattern did not change substantially by extensively perfusing deeply anesthetized mice with phosphate buffered saline (PBS) to remove serum alpha(2)M. In release experiments on fresh (nonfixed) cryostat sections, specific immunoreactivity persisted after an extensive prewash with PBS (up to 5-6 h), but a new specific staining appeared inside those fibers that were originally negative. Western blotting experiments were negative on the soluble fraction of muscle homogenate, thus confirming that the perfusion procedure was effective in removing serum alpha(2)M. By contrast, three specific bands (185, 165, and 35 kDa) appeared in detergent-solubilized extracts (0.3% Triton X-100), indicating the occurrence of tissue-associated alpha(2)M. Confocal immunofluorescence microscopy revealed that the intracellular specific staining was associated to a longitudinal network, probably corresponding to the sarcoplasmic reticulum. A multifunctional role of alpha(2)M in skeletal muscle was hypothesized.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02815105DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
mouse skeletal
8
specific immunoreactivity
8
serum alpha2m
8
specific staining
8
muscle
5
alpha2m
5
specific
5
evidence tissue-associated
4
tissue-associated alpha2
4

Similar Publications

A neuromechanics solution for adjustable robot compliance and accuracy.

Sci Robot

January 2025

Research Center for Information and Communication Technologies, Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain.

Robots have to adjust their motor behavior to changing environments and variable task requirements to successfully operate in the real world and physically interact with humans. Thus, robotics strives to enable a broad spectrum of adjustable motor behavior, aiming to mimic the human ability to function in unstructured scenarios. In humans, motor behavior arises from the integrative action of the central nervous system and body biomechanics; motion must be understood from a neuromechanics perspective.

View Article and Find Full Text PDF

The fast-bowling action demands repetitive high-intensity whole body movements, imposing complex physical and perceptual demands on players that vary significantly throughout the season. This study aimed to assess and establish practical methods and metrics for quantifying fatigue after four simulated fast bowling spells. Eleven senior club male fast bowlers (age 27.

View Article and Find Full Text PDF

Motor dysfunction and muscle atrophy are typical symptoms of patients with spinal cord injury (SCI). Exercise training is a conventional physical therapy after SCI, but exercise intervention alone may have limited efficacy in reducing secondary injury and promoting nerve regeneration and functional remodeling. Our previous research found that intramedullary pressure after SCI is one of the key factors affecting functional prognosis.

View Article and Find Full Text PDF

The target of rapamycin(TOR)gene is closely related to metabolism and cellular aging, but it is unclear whether the TOR pathways mediate endurance exercise against the accelerated aging of skeletal muscle induced by high salt intake. In this study, muscular TOR gene overexpression and RNAi were constructed by constructing MhcGAL4/TOR-overexpression and MhcGAL4/TORUAS-RNAi systems in Drosophila. The results showed that muscle TOR knockdown and endurance exercise significantly increased the climbing speed, climbing endurance, the expression of autophagy related gene 2(ATG2), silent information regulator 2(SIR2), and pparγ coactivator 1(PGC-1α) genes, and superoxide dismutases(SOD) activity, but it decreased the expression of the TOR gene and reactive oxygen species(ROS) level, and it protected the myofibrillar fibers and mitochondria of skeletal muscle in Drosophila on a high-salt diet.

View Article and Find Full Text PDF

Lower-limb exoskeletons have demonstrated great potential for gait rehabilitation in individuals with motor impairments; however, maintaining human-exoskeleton coordination remains a challenge. The coordination problem, referred to as any mismatch or asynchrony between the user's intended trajectories and exoskeleton desired trajectories, leads to sub-optimal gait performance, particularly for individuals with residual motor ability. Here, we investigate the virtual energy regulator (VER)'s ability to generate coordinated locomotion in lower limb exoskeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!