1. We have explored the effects of targeted disruption of the N-methyl-D-aspartate (NMDA) receptor epsilon 1 or epsilon 2 subunit gene on NMDA receptor-mediated excitatory postsynaptic currents (NMDA EPSCs) and long-term potentiations (LTPs) at the two types of synapse in mouse hippocampal CA3 pyramidal neurons: those formed by the commissural/associational (C/A) and fimbrial (Fim) inputs. 2. Electrophysiological experiments were performed in hippocampal slices prepared from both wild-type and epsilon 1- or epsilon 2-disrupted mice using extracellular and whole-cell patch recording techniques. To assess the epsilon 1, epsilon 2 and zeta 1 subunit expression at cellular levels, we performed non-isotopic in situ hybridization with digoxigenin-labelled cRNA probes. 3. We could record EPSCs in response to the stimulations to either of the C/A and Fim afferents from a single CA3 pyramidal neuron. The epsilon 1, epsilon 2 and zeta 1 subunits were expressed together in individual CA3 neurons. 4. The epsilon 1 subunit disruption selectively reduced NMDA EPSCs and LTP in the C/A-CA3 synapse without significantly affecting those in the Fim-CA3 synapse, whereas the epsilon 2 subunit mutation diminished NMDA EPSCs and LTP in the Fim-CA3 synapse with no appreciable functional modifications in the C/A-CA3 synapse. 5. These results suggest that NMDA receptors with different subunit compositions function within a single CA3 pyramidal cell in a synapse-selective manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1159393 | PMC |
http://dx.doi.org/10.1113/jphysiol.1997.sp022030 | DOI Listing |
J Chem Inf Model
January 2025
Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China.
Deoxyribonucleic acid (DNA) serves as a repository of genetic information in cells and is a critical molecular target for various antibiotics and anticancer drugs. A profound understanding of small molecule interaction with DNA is crucial for the rational design of DNA-targeted therapies. While the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics/generalized Born surface area (MM/GBSA) approaches have been well established for predicting protein-ligand binding, their application to DNA-ligand interactions has been less explored.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China. Electronic address:
This study aimed to investigate the associations of liquid-liquid phase separation (LLPS) and tumor stemness in hepatocellular carcinomas (HCC). LLPS-related genes were extracted from DrLLPS, LLPSDB and PhaSepDB databases. Stemness index (mRNAsi) was calculated based on the data from TCGA and Progenitor Cell Biology Consortium.
View Article and Find Full Text PDFBiomaterials
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China. Electronic address:
Heavily exuding wounds are difficult to heal due to the accumulation of a large amount of exudates and the difficulty in efficient delivery of drugs by conventional wound dressings. Herein, inspired by the microstructure and function of octopus sucker (OS) and tree trunk (TT), we propose a bioinspired strategy to fabricate novel bioinspired OS&TT bilayered wound dressing, assembled by a lower OS-like nanofiber membrane with concave convex arrays and an upper TT-like nanofiber sponge with vertically aligned pores. The integration of bioinspired concave arrays and vertically aligned pores endows the bioinspired OS&TT dressing with dual vertical suction property, enabling effective drainage of significant amount of accumulated liquid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Nippon Denko Co., Ltd., 1-4-16 Yaesu, Chuo-ku, Tokyo 103-8282, Japan.
Terahertz waves are gathering attention as carrier waves for next-generation wireless communications such as sixth-generation wireless communication networks and autonomous driving systems. Electromagnetic-wave absorbers for the terahertz-wave region are necessary to ensure information security and avoid interference issues. Herein we report a high-performance terahertz-wave absorber composed of a composite of metallic λ-TiO and insulating TiO nanocrystals (λ-TiO@TiO).
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
School of Materials Science and Physics, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
The application of a three-dimensional (3D)-printed biological functional scaffold in the repair of bone defects is a promising strategy. In this study, strontium-containing hydroxyapatite (SrHA) powder was synthesized by the hydrothermal method, and then poly(ε-caprolactone) (PCL)/HA and PCL/SrHA composite scaffolds were prepared by the high-temperature melt extrusion 3D printing technology. The basic physical and chemical properties, in vitro biological properties, osteogenesis, and angiogenesis abilities of the scaffold were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!