Purpose: We developed two models that are modifications of our original poly(2-hydroxyethyl methacrylate) (PHEMA) core-and-skirt keratoprosthesis. In these keratoprostheses, the mechanical strength of the skirt has been considerably increased with divinyl glycol (DVG) as a cross-linking agent during polymerization. In one (KPro I), methyl methacrylate (MMA) was added as comonomer to increase cell adhesion, and in the other (KPro II), HEMA was polymerized with DVG without comonomer. The aim of this study was to evaluate the process of healing and biocolonization and to ascertain whether KPro I demonstrates better ingrowth than the mechanically stronger KPro II, after implantation in rabbit eyes.
Methods: Ten rabbits were used for each model and studied at five predetermined end points up to 26 weeks. The device was implanted as a full-thickness keratoprosthesis covered with a conjunctival flap.
Results: Neither prosthesis demonstrated extrusion or retroprosthetic membrane formation. There was no significant difference between the two types of prosthesis with respect to tissue ingrowth and surrounding tissue melting. Histologically, inflammation was not severe, but calcification was seen in most specimens. Evidence of biodegradation of the prosthesis also was seen.
Conclusion: In our original keratoprosthesis, fibrovascular invasion had occurred into the prosthetic skirt, but wound dehiscence and low mechanical strength resulted in an unfavorable outcome. In this series, the mechanical properties were improved, and KPro II was stronger than KPro I. Therefore KPro II would be the preferred polymer combination for surgical manipulation. However, biodegradation and calcification require further investigation into the degree and significance of these adverse reactions.
Download full-text PDF |
Source |
---|
Foot Ankle Int
January 2025
Department of Orthopaedic Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China.
Background: The paratenon has been shown to promote Achilles tendon healing, but the evidence supporting the role of paratenon protection technique in Achilles tendon repair is sparse. We retrospectively assessed the results of a paratenon-sparing repair technique vs an open giftbox repair of Achilles tendon ruptures.
Methods: Patients with Achilles tendon rupture who underwent surgical treatment at our hospital between January 2015 and August 2021 were retrospectively reviewed.
Biophys J
January 2025
Department of Pharmacology, University of California Davis, California 95616.
In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
January 2025
MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Shandong University, Jinan, China.
In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil Engineering, University of Guilan, Rasht, Iran.
Glassphalt suffers from performance defects, especially against moisture damage and fatigue cracking. In this research, the performance of glassphalt modified with CF has been evaluated against moisture damage, fatigue cracking and rutting. Based on this, Modified Lottman, Wilhelmy Plate (WP), Indirect Tensile Stiffness Modulus (ITSM), Indirect Tensile Fatigue (ITF), and Repeated Load Axial (RLA) tests have been performed on glassphalt modified with CF.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Chemistry, University of Warwick, Coventry, UK.
Pectin is a major component of plant cells walls. The extent to which pectin chains crosslink with one another determines crucial properties including cell wall strength, porosity, and the ability of small, biologically significant molecules to access the cell. Despite its importance, significant gaps remain in our comprehension, at the molecular level, of how pectin cross-links influence the mechanical and physical properties of cell walls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!