Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In pituitary cells, voltage-dependent Ca2+ channels play an important role in such physiological processes as exocytosis, secretion, the cell cycle, and proliferation. Thus mechanisms that modulate voltage-dependent Ca2+ channel activity participate indirectly in regulating intracellular Ca2+ concentration. We have shown a new modulating mechanism for voltage-dependent Ca2+ channels by demonstrating that Ca2+ influx is influenced by Cl-. To evaluate the role of Cl- on Ca2+ conductance coupling, we first measured the intracellular Cl- concentration of rat lactotrophs using the Cl(-)-sensitive fluorescence probe sulfopropylquinolinium by simple microspectrofluorometry or combined with electrophysiology. We found an average intracellular Cl- concentration of rat lactotrophs of approximately 60 mM (n = 39). Using the whole cell tight-seal recording technique, we showed that a reduction in external Cl- concentration ([Cl-]o) and a decrease in Cl- conductances affected Ca2+ conductance as measured by Ba2+ movement through the Ca2+ channels (I(Ba)). Low [Cl-]o (39 mM) induced a decrease in Ca2+ entry via voltage-gated Ca2+ channels (-27.75 +/- 4% of normalized I(Ba)). Similarly, blockade of the Cl- conductance by 1 mM 9-anthracene carboxylic acid induced a decrease in I(Ba) (-26 +/- 6% of normalized I(Ba)). This modulation of I(Ba) was inhibited by 24-h pretreatment of the cells with pertussis toxin (1 microg/ml), suggesting that changes in Cl- concentration induced by low [Cl-]o and 9-anthracene carboxylic acid interfered with the phosphorylation of G proteins involved in Ca2+ channel activation. These results suggest a feedback mechanism based on constant interaction between Ca2+ and Cl-. Finally, they also emphasize the physiological role of Cl- in rat lactotrophs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.1997.272.4.C1178 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!