A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Squalene-hopene cyclase from Bradyrhizobium japonicum: cloning, expression, sequence analysis and comparison to other triterpenoid cyclases. | LitMetric

Squalene-hopene cyclase from Bradyrhizobium japonicum: cloning, expression, sequence analysis and comparison to other triterpenoid cyclases.

Microbiology (Reading)

Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, 220 Riverbend Road, Athens, GA 30602-4712, USA.

Published: April 1997

With the help of a PCR-based screening method, the gene encoding squalenehopene cyclase (SHC) of Bradyrhizobium japonicum USDA 110 was isolated from a cosmid library. The SHC catalyses the cyclization of squalene to hopanoids, a class of triterpenoid lipids recently discovered in nitrogen-fixing, root-nodule-forming Bradyrhizobium bacteria. Hybridization experiments showed that the gene is present in bacteria of all Bradyrhizobium strains tested and in photosynthetic bacteria forming stem nodules on tropical legumes of the genus Aeschynomene. The Bradyrhizobium shc gene is 1983 bp in length and encodes a protein of 660 amino acid residues with a calculated molecular mass of 73671 Da. Comparison of the deduced amino acid sequence with the sequences of other SHCs revealed highest similarity (70%) to the SHC from the Gram-negative Zymomonas mobilis and lower similarity (48%) to the SHCs from the Gram-positive Alicyclobacillus acidocaldarius and Alicyclobacillus acidoterrestris. Bradyrhizobium SHC also showed similarity (38-43%) to eukaryotic oxidosqualene cyclases. The B. japonicum shc gene was expressed in Escherichia coli. The recombinant SHC catalysed the cyclization of squalene to the hopanoids hopene and diplopterol in vitro. However, the formation of the gammacerane derivative tetrahymanol, which is produced in addition to hopanoids in B. japonicum strains in vivo, could not be detected in vitro. Therefore, the presence of a second squalene cyclase in B. japonicum can be assumed. Sequence analysis of 0.5 kb upstream from the shc gene identified a partial ORF with significant similarity to the C-terminus of an ORF located immediately upstream from the shc gene in Z. mobilis. Both ORFs also showed similarity to phytoene desaturases from cyanobacteria and plants. The 3'-end of this ORF from B. japonicum overlaps with 13 bp at the 5'-end of shc. The close proximity of this ORF to shc suggests that shc and this ORF may be part of an operon.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-143-4-1235DOI Listing

Publication Analysis

Top Keywords

shc gene
16
shc
12
bradyrhizobium japonicum
8
sequence analysis
8
cyclization squalene
8
squalene hopanoids
8
bradyrhizobium shc
8
amino acid
8
upstream shc
8
bradyrhizobium
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!