Isolation and characterization of the gene encoding single-stranded-DNA-binding protein (SSB) from four marine Shewanella strains that differ in their temperature and pressure optima for growth.

Microbiology (Reading)

Center for Marine Biotechnology and Biomedicine, Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA.

Published: April 1997

AI Article Synopsis

  • The ssb gene, coding for single-stranded-DNA-binding protein (SSB), was cloned from four marine Shewanella strains, showing variations in temperature and pressure tolerance.
  • All Shewanella SSBs were able to complement E. coli mutants, with efficiencies that ranged with the gene source and temperature, and they are the largest bacterial SSBs identified so far.
  • Analysis revealed that the SSBs exhibited notable amino acid sequence homology among the Shewanella strains, with certain features correlating to their adaptation to either low temperature or high pressure, making them a valuable system for studying protein interactions under these conditions.

Article Abstract

The ssb gene, coding for single-stranded-DNA-binding protein (SSB), was cloned from four marine Shewanella strains that differed in their temperature and pressure optima and ranges of growth. All four Shewanella ssb genes complemented Escherichia coli ssb point and deletion mutants, with efficiencies that varied with temperature and ssb gene source. The Shewanella SSBs are the largest bacterial SSBs identified to date (24.9-26.3 kDa) and may be divided into conserved amino- and carboy-terminal regions and a highly variable central region. Greater amino acid sequence homology was observed between the Shewanella SSBs as a group (72-87%) than with other bacterial SSBs (52-69%). Analysis of the amino acid composition of the Shewanella SSBs revealed several features that could correlate with pressure or temperature adaptation. SSBs from the three low-temperature-adapted Shewanella strains were an order of magnitude more hydrophilic than that from the mesophilic strain, and differences in the distribution of eight amino acids were identified which could contribute to either the temperature or pressure adaptation of the proteins. The SSBs from all four Shewanella strains were overproduced and partially purified based upon their ability to bind single-stranded DNA. The differences found among the Shewanella SSBs suggest that these proteins will provide a useful system for exploring the adaptation of protein-protein and protein-DNA interactions at low temperature and high pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-143-4-1163DOI Listing

Publication Analysis

Top Keywords

shewanella strains
16
shewanella ssbs
16
temperature pressure
12
shewanella
9
single-stranded-dna-binding protein
8
protein ssb
8
marine shewanella
8
pressure optima
8
ssb gene
8
ssbs
8

Similar Publications

Truncated hemoglobins (TrHbs) have an ancient origin and are widely distributed in microorganisms where they often serve roles other than dioxygen transport and storage. In extremophiles, these small heme proteins must have features that secure function under challenging conditions: at minimum, they must be folded, retain the heme group, allow substrates to access the heme cavity, and maintain their quaternary structure if present and essential. The genome of the obligate psychropiezophile Shewanella benthica strain KT99 harbors a gene for a TrHb belonging to a little-studied clade of globins (subgroup 2 of group N).

View Article and Find Full Text PDF

The correlation between spoilage bacteria and the degradation of aquatic food quality during chilled storage is substantial. However, our understanding of the precise roles of spoilage bacteria in oyster spoilage remains incomplete. The aim of this study was to explore the role of three dominant spoilage bacteria strains in oyster spoilage.

View Article and Find Full Text PDF

Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.

View Article and Find Full Text PDF

To enhance the growth of the cyanobacterium Synechococcus elongatus, the present study conducted direct screening for cyanobacterium growth-promoting bacteria (CGPB) using co-cultures. Of the 144 strains obtained, four novel CGPB strains were isolated and phylogenetically identified: Rhodococcus sp. AF2108, Ancylobacter sp.

View Article and Find Full Text PDF

A Redox-Enzyme Integrated Microbial Fuel Cell Design Using the Surface Display System in MR-1.

ACS Appl Mater Interfaces

January 2025

Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

A biofuel cell is an electrochemical device using exoelectrogen or biocatalysts to transfer electrons from redox reactions to the electrodes. While wild-type microbes and natural enzymes are often employed as exoelectrogen and biocatalysts, genetically engineered or modified organisms have been developed to enhance exoelectrogen activity. Here, we demonstrated a redox-enzyme integrated microbial fuel cell (REI-MFC) design based on an exoelectrogen-enhancing strategy that reinforces the electrogenic activity of MR1 by displaying an extra redox enzyme on the cell surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!