Myasthenia gravis (MG) and its animal model experimental autoimmune myasthenia gravis (EAMG) are caused by autoantibodies against nicotinic acetylcholine receptor (AChR) in skeletal muscle. The production of anti-AChR antibodies is mediated by cytokines produced by CD4+ and CD8+ T helper (Th) cells. Emerging investigations of the roles of cytokines in MG and EAMG have revealed that the Th2 cell related cytokine interleukin 4 (IL-4), an efficient growth promoter for B-cell proliferation and differentiation, is important for anti-AChR antibody production. IL-6 and IL-10 have similar effects. The Th1 cytokine IFN-gamma is important in inducing B-cell maturation and in helping anti-AChR antibody production and, thereby, for induction of clinical signs and symptoms. Results from studies of time kinetics of cytokines imply that IFN-gamma is more agile at the onset of EAMG, probably being one of the initiating factors in the induction of the disease, and IL-4 may be mainly responsible for disease progression and persistance. Even though other Th1 cytokines like IL-2, tumor necrosis factor alpha (TNF-alpha), and TNF-beta as well as the cytolytic compound perforin do not directly play a role in T-cell-mediated help for anti-AChR antibody production, they are actually involved in the development of both EAMG and MG, probably by acting in concert with other cytokines within the cytokine network. In contrast, transforming growth factor beta (TGF-beta) exerts immunosuppressive effects which include the down-regulation of both Th1 and Th2 cytokines in MG as well as EAMG. Suppressive effects are also exerted by interferon alpha (IFN-alpha). Based on elucidation of the role of cytokines in EAMG and MG, treatments that up-modulate TGF-beta or IFN-alpha and/or suppress cytokines that help B-cell proliferation could be useful to improve the clinical outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(sici)1097-4598(199705)20:5<543::aid-mus2>3.0.co;2-9 | DOI Listing |
JAAPA
February 2025
Allyson Hamacher is an instructor in neurology and assistant director of the NP/PA Neurology Fellowship at Mayo Clinic in Phoenix, Ariz. The author has disclosed no potential conflicts of interest, financial or otherwise.
Front Med (Lausanne)
January 2025
Ganzhou City People's Hospital, Ganzhou, Jiangxi, China.
Myasthenia gravis (MG) is an autoimmune disorder involving complex interactions between genetic and environmental factors. Genome-wide association studies (GWAS), transcriptome-wide association studies (TWAS), and other methods have identified multiple novel susceptibility loci and genes, providing crucial insights into the genetic etiology of MG. Moreover, the pivotal roles of epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs, in the pathogenesis of MG are gradually being unveiled.
View Article and Find Full Text PDFRadiol Case Rep
March 2025
Department of Emergency Medicine, The Fourth Affiliated hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, China.
Hyperthyroidism is linked to several muscle disorders, including thyrotoxic myopathy, myasthenia gravis, and periodic paralysis. Thyrotoxic periodic paralysis (TPP) is a rare and potentially life-threatening neuromuscular condition that predominantly affects Asian males and is characterized by muscle weakness, hypokalemia, and thyrotoxicosis. Treatment involves potassium supplementation, and beta-blockers.
View Article and Find Full Text PDFTher Adv Neurol Disord
January 2025
Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
Background: China has a large number of myasthenia gravis (MG) patients, creating an urgent need for rapid and tolerable treatment options. As the first-approved Fc receptor antagonist, efgartigimod has bright prospects for treating MG. However, real-world evidence on its application within the Chinese MG population are limited.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Medical Oncology, Alicante Institute for Health and Biomedical Research, Alicante, Comunidad Valenciana, Spain.
The increasing use of immune checkpoint inhibitors in clinical practice is associated with a broad spectrum of immune-related adverse events, such as cardiac, rheumatological and neurological toxicities. Myocarditis is a life-threatening complication, and the concurrent development of myocarditis, myositis and/or myasthenia leads to difficulties in diagnosis, management and treatment. We describe a case presenting with this triple M overlap syndrome following pembrolizumab treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!