LTP and spatial learning--where to next?

Hippocampus

Department of Anatomy and Developmental Biology, University College London, United Kingdom.

Published: May 1997

Hebb suggested, in 1949, that memories could be stored by forming associative connections between neurons if the criterion for increasing the connection strength between them be that they were active simultaneously. Much attention has been devoted towards trying to determine a) if there is a physiological substrate of such a rule, and b) if so, whether the phenomenon participates in real-life memory formation. The discovery of the electrically induced increase in synaptic strength known as long-term potentiation (LTP), in the early 1970s, demonstrated that a neural version of the Hebb rule could be observed under laboratory conditions in the hippocampus, a structure important for some types of learning. However, a quarter of a century later, the evidence linking LTP to learning and memory is still contradictory. The purpose of the present article is to review and assess the types of approach that have been taken in trying to determine whether hippocampal synaptic plasticity participates in memory formation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1098-1063(1997)7:1<95::AID-HIPO10>3.0.CO;2-DDOI Listing

Publication Analysis

Top Keywords

memory formation
8
ltp spatial
4
spatial learning--where
4
learning--where next?
4
next? hebb
4
hebb suggested
4
suggested 1949
4
1949 memories
4
memories stored
4
stored forming
4

Similar Publications

ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue.

View Article and Find Full Text PDF

Cerebral Microbleeds and Amyloid Pathology Estimates From the Amyloid Biomarker Study.

JAMA Netw Open

January 2025

Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.

Importance: Baseline cerebral microbleeds (CMBs) and APOE ε4 allele copy number are important risk factors for amyloid-related imaging abnormalities in patients with Alzheimer disease (AD) receiving therapies to lower amyloid-β plaque levels.

Objective: To provide prevalence estimates of any, no more than 4, or fewer than 2 CMBs in association with amyloid status, APOE ε4 copy number, and age.

Design, Setting, And Participants: This cross-sectional study used data included in the Amyloid Biomarker Study data pooling initiative (January 1, 2012, to the present [data collection is ongoing]).

View Article and Find Full Text PDF

Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration.

Mol Cell Biochem

January 2025

State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.

Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria.

View Article and Find Full Text PDF

AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases.

Cell Mol Neurobiol

January 2025

Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.

Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!