The interaction of DMPC (L-alpha-dimyristoyl-1,2-diterradecanoyl-sn-glycero-3-phosphoch oli ne, C36H72NO8P) lipid-coated Si3N4 surfaces immersed in an electrolyte was investigated with an atomic force microscope. A long-range interaction was observed, even when the Si3N4 surfaces were covered with nominally neutral lipid layers. The interaction was attributed to Coulomb interactions of charges located at the lipid surface. The experimental force curves were compared with solutions for the linearized as well as with exact solutions of the Poisson-Boltzmann equation. The comparison suggested that in 0.5 mM KCl electrolyte the DMPC lipids carried about one unit of charge per 100 lipid molecules. The presence of this surface charge made it impossible to observe an effective charge density recently predicted for dipole layers near a dielectric when immersed in an electrolyte. A discrepancy between the theoretical results and the data at short separations was interpreted in terms of a decrease in the surface charge with separation distance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184523 | PMC |
http://dx.doi.org/10.1016/S0006-3495(97)78787-3 | DOI Listing |
Small
January 2025
College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, P. R. China.
Constructing heterojunctions between phase interfaces represents a crucial strategy for achieving excellent photocatalytic performance, but the absence of sufficient interface driving force and limited charge transfer pathway leads to unsatisfactory charge separation processes. Herein, a doping-engineering strategy is introduced to construct a In─N bond-bridged InS nanocluster modified S doped carbon nitride (CN) nanosheets Z-Scheme van der Waals (VDW) heterojunctions (InS/CNS) photocatalyst, and the preparation process just by one-step pyrolysis using the pre-coordination confinement method. Specifically, S atoms doping enhances the bond strength of In─N and forms high-quality interfacial In─N linkage which serves as the atomic-level interfacial "highway" for improving the interfacial electrons migration, decreasing the charge recombination probability.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.
Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.
View Article and Find Full Text PDFFront Microbiol
January 2025
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, Mexico.
With antibiotic resistance increasing in the global population every year, efforts to discover new strategies against microbial diseases are urgently needed. One of the new therapeutic targets is the bacterial cell membrane since, in the event of a drastic alteration, it can cause cell death. We propose the utilization of hydrophobic molecules, namely, propofol (PFL) and cannabidiol (CBD), dissolved in nanodroplets of oil, to effectively strike the membrane of two well-known pathogens: and .
View Article and Find Full Text PDFEur J Oral Sci
January 2025
Department of Biology, Faculty of Science, Ege University, Izmir, Turkiye.
The aims of this study were twofold: first, to investigate the surface roughness of different abutment materials prepared using various manufacturing methods; and, second, to evaluate colonization by Streptococcus mutans and Candida albicans according to abutment material and manufacturing method. Six material/manufacturing method combinations were investigated in this study, namely chromium-cobalt (Cr-Co) (prepared using casting, milling, and laser sintering) and titanium, zirconia, and anodized titanium (all prepared using milling); titanium (stock) abutments were used as the control group. Surface roughness of seven specimens from each group was evaluated using atomic force microscopy and scanning electron microscopy.
View Article and Find Full Text PDFNat Commun
January 2025
Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
Materials usually fracture before reaching their ideal strength limits. Meanwhile, materials with high strength generally have poor ductility, and vice versa. For example, gold with the conventional face-centered cubic (FCC) phase is highly ductile while the yield strength (~10MPa) is significantly lower than its ideal theoretical limit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!