Immunolocalization of the multi-sarco/endoplasmic reticulum Ca2+ ATPase system in human platelets.

Br J Haematol

U.348 INSERM, IFR Circulation Lariboisière, Hôpital Lariboisière, Paris, France.

Published: April 1997

We recently identified a multi-SERCA (sarco/endoplasmic reticulum Ca2+ ATPase) system in haemopoietic cells comprising the SERCA 2b, SERCA 3 and a new monoclonal anti-Ca2+ ATPase antibody (PL/IM 430) recognizable SERCA isoforms. We have now investigated the subcellular localization of these enzymes in human platelets by Western blotting of subcellular membrane fractions and by immunoelectron microscopy. We precisely defined the recognition specificity of the polyclonal anti-SERCA 2b, anti-SERCA 3, anti-SERCA 1 antibodies as well as of the monoclonal antibody PL/IM 430 by testing their recognition of the tryptic fragments of the SERCA isoforms. The analysis of fragmented membranes enriched in plasma membrane and intracellular membrane components by Western blotting showed that the SERCA 2b and the SERCA 3 isoforms were found in both the plasma membrane and the intracellular membrane fractions, whereas the PL/IM 430 recognizable SERCA isoform was restricted to membranes associated with the plasma membrane fraction. The immunoelectron microscopical study of the SERCA isoforms in resting platelets showed that: (i) the SERCA 2b isoform was expressed in membranes associated with the plasma membrane and open canalicular system, some alpha-granules and in unidentified membranes; (ii) the SERCA 3 isoform was found associated with plasma and intracellular membranes; and (iii) the PL/IM 430 recognizable SERCA isoform was observed only in structures associated with the cytoplasmic face of the plasma membranes, as confirmed by flow cytometry. Finally, since the PL/IM 430 antibody was raised against intracellular membranes, we looked for a potential membrane redistribution during the isolation procedure used for the preparation of the immunizing membranes. Neuraminidase treatment indeed induced a translocation of the PL/IM 430 recognizable SERCA isoform from plasma to intracellular membranes. Thus, the multi-SERCA system in platelets: (i) is distributed over different platelet membranes, (ii) presents a sub-compartmental organization with some overlapping, and (iii) is partly associated with motile membranes, reflecting an unrecognized level of complexity of Ca2+ stores in these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2141.1997.9982639.xDOI Listing

Publication Analysis

Top Keywords

pl/im 430
24
serca isoform
20
430 recognizable
16
recognizable serca
16
serca isoforms
16
plasma membrane
16
serca
12
associated plasma
12
intracellular membranes
12
membranes
11

Similar Publications

Inter-individual variability in Ca2+ signal generation was studied in platelets from 15 healthy volunteers. The possible involvement of variation in thromboxane A production and variation in sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) was investigated by using platelets isolated before and after intake of 500 mg aspirin, and by measuring the expression levels of two main SERCA isoforms (SERCA-2b and PL/IM 430-recognizable SERCA). Considerable difference in Ca2+ responses were detected after platelet stimulation with thrombin, collagen or the SERCA-2b inhibitor, thapsigargin (TG), with inter-individual coefficients of variance of 22-43% in the absence and 15-41% in the presence of aspirin.

View Article and Find Full Text PDF

The molecular cloning of two previously unknown human sarco/endoplasmic reticulum Ca(2+)-ATPase 3 (SERCA3) 3'-end transcripts, 3b and 3c, has been recently published. Data were lacking, however, for the presence of these SERCA3 variants in different tissue or cell types at the protein level. Here we report the co-expression of three human SERCA3 protein isoforms in platelets and T lymphoid Jurkat cells.

View Article and Find Full Text PDF

Increased Ca2+ signal generation may lead to hyperactivity of platelets and contribute to thrombotic complications. Using fura-2-loaded platelets from 51 healthy volunteers, high variability was detected in the Ca2+ responses evoked by the receptor agonists, thrombin and collagen, and the inhibitor of sarco/endoplasmic reticulum Ca2+-ATPases (SERCA), thapsigargin (Tg). Oral intake of 500mg aspirin reduced the magnitude of the Ca2+ responses, and lowered the intra-individual coefficients of variance of the responses by 50%.

View Article and Find Full Text PDF

Immunolocalization of the multi-sarco/endoplasmic reticulum Ca2+ ATPase system in human platelets.

Br J Haematol

April 1997

U.348 INSERM, IFR Circulation Lariboisière, Hôpital Lariboisière, Paris, France.

We recently identified a multi-SERCA (sarco/endoplasmic reticulum Ca2+ ATPase) system in haemopoietic cells comprising the SERCA 2b, SERCA 3 and a new monoclonal anti-Ca2+ ATPase antibody (PL/IM 430) recognizable SERCA isoforms. We have now investigated the subcellular localization of these enzymes in human platelets by Western blotting of subcellular membrane fractions and by immunoelectron microscopy. We precisely defined the recognition specificity of the polyclonal anti-SERCA 2b, anti-SERCA 3, anti-SERCA 1 antibodies as well as of the monoclonal antibody PL/IM 430 by testing their recognition of the tryptic fragments of the SERCA isoforms.

View Article and Find Full Text PDF

The platelet Ca2+ transport ATPase system.

Platelets

January 1997

U 348 INSERM, IFR Circulation Lariboisiere, Hopital Lariboisiere, 8, Rue Guy Patin, 75475 Paris Cedex 10, France.

The Ca2+ signal accompanying cell function involves the activities of plasma membrane Ca2+ transport ATPases (PMCA) which transport Ca2+ ions out of the cell and those of sarco/endoplasmic reticulum Ca2+ transport ATPases (SERCA), which pump Ca2+ ions into intracellular Ca2+ pools. Although a platelet Ca2+ transport ATPase was described three decades ago, for a long time it remained poorly understood in terms of its cellular localization and identity. By integrating data obtained during recent years, including newly available information in the literature for the PMCAs and aspects of our work concerning the SERCAs, the present review will show how the overall view of the platelet Ca2+ATPase system has to be modified due to the presence of a number of Ca2+ATPases in these cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!