Background: Recent data have suggested two principles that are central to the work we describe here. First, proteins are the result of evolutionary 'sequence selection' to optimize the energy of the native state. Second, the overlap with the native state is a qualitatively suitable reaction coordinate for modeling folding kinetics. The former principle is bolder and better established.
Results: Employing only these two principles, we have constructed a non-phenomenological, correlated energy landscape theory that predicts single barrier protein folding kinetics. Moreover, we are able to analytically describe the nature of the free energetic barrier between the denatured and native states of a protein and to detail the nature of folding kinetics for short proteins. Our model predicts Hammond behavior and also describes how mutations can lead to drastic differences in folding times.
Conclusions: We find that folding and unfolding kinetics can be characterized by a single thermodynamic parameter and, moreover, that Monte Carlo simulation data on folding and unfolding rates with different temperatures and mutations collapse with this characterization. Our results also delineate a regime in which kinetics may proceed via a single unique nucleus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1359-0278(97)00015-1 | DOI Listing |
J Colloid Interface Sci
December 2024
College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China. Electronic address:
The unique structure and strong interaction of multiphase hybrid materials have garnered significant attention as prospective candidates for electrode materials in the realm of energy storage. The present study presents a rational design of a functional NiSe-CoSe/N, B double-doped carbon hybrid composite (NCS/C), resulting in the emergence of various novel cooperative regulatory mechanisms involving: (i) the heterogeneous structure of NiSe and CoSe generates built-in electric fields to increase electron mobility; (ii) the incorporation of polyatomic double-doped carbon (N, and B) expedites electron transfer rate; intriguingly, (iii) ionic liquids not only serve as polyatomic dopants in the reaction system but also influence the microstructure of the composite. Benefiting from these synergistic effects, the NCS/C hybrid exhibits remarkable charge storage capacity and rapid electrochemical kinetics, driven by its multi-fold hollow structure and multicomponent cooperative modulation.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China +86-743-8578079.
Androglobin (Adgb) was discovered as the fifth mammalian globin, but its structure and function remain elusive. In this study, the heme-binding globin domain of Adgb was expressed and its interaction with calmodulin (CaM) was investigated. The protein structure of Adgb and its complex with CaM were predicted using AlphaFold3 and HDOCK.
View Article and Find Full Text PDFMol Pharm
December 2024
Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany.
There is still an insufficient understanding of how the characteristics of protein drugs are maintained in the solid state of lyophilizates, including aspects such as protein distances, local environment, and structural preservation. To this end, we evaluated protein folding and the molecules' nearest environment by electron paramagnetic resonance (EPR) spectroscopy. Double electron-electron resonance (DEER) probe distances of up to approximately 200 Å and is suitable to investigate protein folding, local concentration, and aggregation, whereas electron spin echo envelope modulation (ESEEM) allows the study of the near environment within approximately 10 Å of the spin label.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.
Cross-β structures are crucial in driving protein folding and aggregation. However, due to their strong aggregating tendency, the precise control of the self-assembly of β-sheet-forming peptides remains a challenge. We propose a molecular geometry strategy to study and control the self-assembly of cross-β structures.
View Article and Find Full Text PDFPhys Life Rev
December 2024
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation. Electronic address:
This review presents the current understanding of (i) spontaneous self-organization of spatial structures of protein molecules, and (ii) possible ways of chaperones' assistance to this process. Specifically, we overview the most important features of spontaneous folding of proteins (mostly, of the single-domain water-soluble globular proteins): the choice of the unique protein structure among zillions of alternatives, the nucleation of the folding process, and phase transitions within protein molecules. We consider the main experimental facts on protein folding, both in vivo and in vitro, of both kinetic and thermodynamic nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!