Na+/K(+)- and Ca(2+)-ATPase are the major ATP-dependent membrane-bound enzymes that regulate the cation transmembrane gradient which is altered both in red blood cell (RBC) senescence and in RBCs of diabetic patients. In an attempt to clarify the possible connection between diabetes mellitus and ageing, we investigated the relationship between RBC ATP content, Na+/K(+)-ATPase, Ca(2+)-ATPase activities and ageing in healthy, insulin-dependent (IDDM) and non-insulin-dependent (NIDDM) subjects. A significant correlation was found (r = -0.82; P < 0.001) between RBC ATP content and subject's age only in the control group. A significant reduction in Na+/K(+)-ATPase activity was observed in the older group (C2) of control subjects, in comparison with the younger (C1) one. In both IDDM and NIDDM subjects, the enzymatic activity was significantly decreased when compared with health subjects of similar age (P < 0.001). A significant negative correlation was found between age and enzymatic activity in healthy subjects (r = -0.60; P < 0.001). No difference was observed in the RBC membrane Ca(2+)-ATPase activity between younger (C1) and older (C2) healthy subjects. Ca(2+)-ATPase activity was significantly increased both in IDDM patients compared with C1 (P < 0.001) and in NIDDM patients compared with C2 (P < 0.001). The present data indicate that ageing causes a reduction in the erythrocyte ATP content in both healthy and diabetic subjects. In diabetic patients Na+/K(+)-ATPase activity decreases independently of age.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2362.1997.1130652.xDOI Listing

Publication Analysis

Top Keywords

atp content
16
diabetes mellitus
8
diabetic patients
8
rbc atp
8
niddm subjects
8
na+/k+-atpase activity
8
enzymatic activity
8
healthy subjects
8
ca2+-atpase activity
8
patients compared
8

Similar Publications

Pesticides and plastics have brought convenience to agricultural production and daily life, but they have also led to environmental pollution through residual chemicals. Emamectin benzoate (EMB) is among the most widely used insecticides, which can cause environmental pollution and harm the health of organisms. Additionally, microplastics (MPs), a relatively new type of pollutant, not only are increasing in residual amounts within water bodies and aquatic organisms but also exacerbate pollution by adsorbing other pollutants, leading to a mixed pollution scenario.

View Article and Find Full Text PDF

The wide range of applications and the enormous production of nanomaterials have raised the possibility that humans may simultaneously contact with various nanomaterials through multiple routes. Although numerous toxicity studies have been conducted on the toxicity of nanomaterials, knowledge of the combined toxicity of nanomaterials remains limited. Herein, the combined toxic effects of the two types of the most widely used nanomaterials, silver and silica, were studied on HeLa cells.

View Article and Find Full Text PDF

Radiotherapy (RT) is one of the most common treatments for cancer. However, intracellular glutathione (GSH) plays a key role in protecting cancer from radiation damage. Herein, we have developed a platelet membrane biomimetic nanomedicine (PMD) that induces double GSH consumption to enhance tumor radioimmunotherapy.

View Article and Find Full Text PDF

Metabolomic Analysis of the Effects of Canagliflozin on HFpEF Rats and Its Underlying Mechanism.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.

Background: Heart failure with preserved ejection fraction (HFpEF) represents a challenging cardiovascular condition characterized by normal systolic function but impaired diastolic performance. Despite its increasing prevalence, therapeutic options remain limited. This study investigated the metabolic effects of canagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on cardiac function and energy metabolism in HFpEF.

View Article and Find Full Text PDF

Abnormalities in mitochondrial energy metabolism induced by cryopreservation negatively affect goat sperm motility.

Front Vet Sci

January 2025

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.

The motility of sperm decreases following cryopreservation, which is closely associated with mitochondrial function. However, the alterations in mitochondrial metabolism after sperm freezing in goats remain unclear. This experiment aimed to investigate the impact of ultra-low temperature freezing on goat sperm's mitochondrial energy metabolism and its potential correlation with sperm motility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!