Radioiodine long has proven to be a safe and effective treatment for thyroid disease. Nonetheless, persisting concerns regarding radiogenic stochastic risks (e.g., carcinogenesis) to patients, their families, and the general public have led regulators to establish criteria for release of 131I-containing patients from medical confinement, with limits ranging from as low as 2 mCi in some parts of Europe to as high as 30 mCi in the United States. To optimize clinical efficacy and cost-effectiveness of 131I therapy, such regulations should be based on logical dosimetric considerations. The thyroidal absorbed dose, proportional to maximum uptake and effective half-life and inversely proportional to mass, is typically approximately 1,500 rad/mCi of 131I administered to a euthyroid adult (based on a thyroid maximum uptake of 25%, effective half-life equivalent to the physical half-life of 131I (8.04 days), and mass of 20 g). As thyroid uptake increases from 0% to 100%, extrathyroidal absorbed doses range from a minimum of 0.15 to 0.5 rad/mCi for breast and gonads to a maximum of 1.5 to 2 rad/mCi for stomach and salivary glands; the absorbed doses of the urinary bladder wall, in contrast, decrease with increasing thyroid uptake, from 2 to 0.6 rad/mCi. In hyperthyroid patients (approximately 15%) with a small iodine pool (so-called small patients), the short effective half-life of radioiodine in the thyroid and high serum concentrations of long-lived protein-bound 131I result in a standard 7,000-rad absorbed dose for treatment of Graves' disease requiring an administered activity of 28 mCi of 131I and yielding a prohibitively high blood absorbed dose of 150 rad. Importantly, once the fetal thyroid begins to function and accumulate radioiodine at a gestational age of 10-12 weeks, fetal thyroid absorbed doses as large as 5,000 rad/mCi of 131I administered to the mother can result. Thus, pregnancy is an absolute contraindication to administration of 131I because of the risk of radiogenic cretinism. Based on actual measurements of thyroid activity and of external absorbed dose, the total thyroid and mean extrathyroidal absorbed doses to adult family members from immediately released 131I-treated patients are approximately 0.01 and approximately 0.02 rad/mCi administered, respectively, yielding an effective dose of approximately 0.02 rem/mCi. A maximum permissible effective dose of 0.5 rem for adults therefore is consistent with a release criterion of 30 mCi of retained 131I. Lower-activity release criteria therefore may be unnecessarily restrictive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/thy.1997.7.199 | DOI Listing |
Sci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girl Branch), Cairo, Egypt.
Biosynthesized nanoparticles have a variety of applications, and microorganisms are considered one of the most ideal sources for the synthesis of green nanoparticles. Icerya aegyptiaca (Douglas) is a pest that has many generations per year and can affect 123 plant species from 49 families by absorbing sap from bark, forming honeydew, causing sooty mold, and attracting invasive ant species, leading to significant agricultural losses. The purpose of this work was to synthesize titanium dioxide nanoparticles (TiO-NPs) from marine actinobacteria and evaluate their insecticidal effects on Icerya aegyptiaca (Hemiptera: Monophlebidae), in addition to explaining their effects on protein electrophoresis analysis of SDS‒PAGE proteins from control and treated insects after 24, 72 and 120 h of exposure.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Yale PET Center, Yale School of Medicine, New Haven, USA.
Purpose: The sphingosine-1-phosphate receptor-1 (S1PR) is involved in regulating responses to neuroimmune stimuli. There is a need for S1PR-specific radioligands with clinically suitable brain pharmcokinetic properties to complement existing radiotracers. This work evaluated a promising S1PR radiotracer, [F]TZ4877, in nonhuman primates.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
Dosimetry is integral to informed implementation of radiopharmaceutical therapies, enabling personalized treatment planning and ensuring patient safety by calculating absorbed doses to organs and tumors. As the therapeutic radiopharmaceutical field continues to expand, dosimetry software has emerged as a crucial tool for optimization of treatment efficacy. This review discusses key features and capabilities that current dosimetry software solutions have or should have in the future.
View Article and Find Full Text PDFNucl Med Commun
February 2025
Department of Radiology, Netherlands Cancer Institute- Antoni van Leeuwenhoekziekenhuis, Amsterdam, The Netherlands.
Background: Small-molecule biomacromolecules target tumor-specific antigens. They are employed as theranostic agents for imaging and treatment. Intravenous small-molecule radioligands exhibit rapid tumor uptake and excretion.
View Article and Find Full Text PDFMed J Malaysia
January 2025
Nanobiomedicine lab, Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India.
Introduction: The biomedical potential of silver nanoparticles (Ag NPs) synthesized with Zingiber officinale and Ocimum gratissimum herbal formulation was investigated in this study. The study aims to reveal their applications in various biomedical fields. The study evaluates the antioxidant, thrombolytic, and antimicrobial potential of Zingiber officinale and Ocimum gratissimum herbal formulation-mediated Ag NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!