Cerebellar Purkinje cells are generated in the ventricular zone, migrate outward, and finally form a monolayer in the cortex. In reeler mice, however, most Purkinje cells cluster abnormally in subcortical areas. Reelin, the candidate reeler gene product recognized by the CR-50 monoclonal antibody, is concentrated in a cortical zone along which Purkinje cells are aligned linearly, implying that it may regulate their alignment. We used an in vitro system and a transplantation approach to analyze the function of Reelin. Explant culture for 7 d of cerebella isolated from wild-type and reeler mice at embryonic day 13 (E13) reproduced in a phenotype-dependent manner the two distinct arrangement patterns (linear vs clustered) of Purkinje cells. Extensive CR-50 binding to wild-type explants converted the linear pattern into a reeler-like, clustered pattern. On the other hand, when reeler explants lacking Reelin were crowned with an artificial layer of Reelin+ granule cells, some Reelin molecules were distributed into a superficial zone of the reeler explants, and Purkinje cells formed a linear pattern along the Reelin-rich overlay. This "rescue" effect was also inhibited by CR-50. Hence, Reelin is involved in the Purkinje cell alignment, and the lack of this activity may explain the malformation in reeler cerebella. We further injected Reelin+ granule cells into the fourth ventricle of E12-13 mice. Extensive incorporation of the injected Reelin+ cells into the ventricular zone, but not of Reelin- cells, forced Purkinje cells of the host cerebella to form an aberrant layer, suggesting that premigratory Purkinje cells may already be responsive to Reelin or Reelin-related signals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6573700 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.17-10-03599.1997 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!