We have performed direct electrophysiological recordings from Drosophila peptidergic synaptic boutons in situ, taking advantage of a mutation, ecdysone, which causes an increase in size of these terminals. Using patch-clamp techniques, we have analyzed voltage-dependent potassium currents at the macroscopic and single-channel level. The synaptic membrane contained at least two distinct voltage-activated potassium currents with different kinetics and voltage sensitivity: an IA-like current with fast activation and inactivation kinetics and voltage-dependent steady-state inactivation; a complex delayed current that includes a slowly inactivating component, resembling the IK described in other preparations; and a noninactivating component. The IA-like current in these peptidergic boutons is not encoded by the gene Shaker, because it is not affected by null mutations at this locus. Rather, synaptic IA has properties similar to those of the Shal-encoded IA. Single-channel recordings revealed the presence in synaptic membranes of three different potassium channel types (A2, KD, KL), with biophysical properties that could account for the macroscopic currents and resemble those of the Shal, Shab, and Shaw channels described in heterologous expression systems and Drosophila neuronal somata. A2 channels (6-9 pS) have brief open times, and like the macroscopic IA they exhibited voltage-dependent steady-state inactivation and a rapidly inactivating ensemble average current profile. KD channels (13-16 pS) had longer open times, activate and inactivate with much slower kinetics, and may account for the slowly inactivating component of the macroscopic current. KL (44-54 pS) channels produced a noninactivating ensemble average and may contribute to the delayed macroscopic current observed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6573676 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.17-10-03412.1997 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!