Major histocompatibility complex (MHC) restriction of the immune response is established during positive selection of T cells in the thymus. This occurs mainly through interactions of T cell receptor of developing thymocytes with MHC/peptide ligands on cortical thymic epithelial cells (TEC). An ongoing controversy concerns the origin and the role of peptides involved in the positive selection of thymocytes. Evidence provided here shows that processing of MHC class II complexes in cortical TEC differs from that of medullary TEC. Removal of the invariant chain associated with MHC class II complexes was rapid and complete in medullary TEC which present peptides from both exogenous and cytosolic origin. In cortical TEC, a large fraction of class II dimers remained associated with a 10-12-kDa fragment of invariant chain (Ii). Incomplete removal of Ii correlated with the inability of cortical TEC to present peptides from exogenous origin. However, presentation of peptides from cytosolic proteins by cortical TEC remained possible. Thus, most peptides from exogenous proteins may be excluded from participating in positive selection of CD4+ T cells by a mechanism limiting Ii breakdown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.1830270408 | DOI Listing |
Front Immunol
December 2024
Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan.
Medullary thymic epithelial cells (mTECs) play a crucial role in suppressing the onset of autoimmunity by eliminating autoreactive T cells and promoting the development of regulatory T cells in the thymus. Although mTECs undergo turnover in adults, the molecular mechanisms behind this process remain unclear. This study describes the direct and indirect roles of receptor activator of NF-κB (RANK) and CD40 signaling in TECs in the adult thymus.
View Article and Find Full Text PDFPsychiatry Res Neuroimaging
January 2025
Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg 7505, Cape Town, South Africa; Genomics of Brain Disorders, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
Background: Reward system dysfunction may play a role in the comorbidity of metabolic syndrome (MetS) in posttraumatic stress disorder (PTSD). Psychological resilience, through its effects on the reward system, may modulate outcomes in PTSD. Utilising a monetary incentive delay task during functional magnetic resonance imaging in a case-control study (PTSD, n = 88, trauma-exposed controls [TEC], n = 85), we aimed to investigate reward system function in relation to PTSD, MetS, and psychological resilience.
View Article and Find Full Text PDFPsychophysiology
October 2024
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia.
Cell Rep
September 2024
Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA. Electronic address:
Cortical neurons encode both sensory and contextual information, yet it remains unclear how experiences modulate these cortical representations. Here, we demonstrate that trace eyeblink conditioning (TEC), an aversive associative-learning paradigm linking conditioned (CS) with unconditioned stimuli (US), finely tunes cortical coding at both population and single-neuron levels. Initially, we show that the primary somatosensory cortex (S1) is necessary for TEC acquisition, as evidenced by local muscimol administration.
View Article and Find Full Text PDFJ Neural Eng
July 2024
Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, People's Republic of China.
To improve the understanding and diagnostic accuracy of disorders of consciousness (DOC) by quantifying transcranial magnetic stimulation (TMS) evoked electroencephalography connectivity using permutation conditional mutual information (PCMI).PCMI can characterize the functional connectivity between different brain regions. This study employed PCMI to analyze TMS-evoked cortical connectivity (TEC) in 154 DOC patients and 16 normal controls, focusing on optimizing parameter selection for PCMI (Data length, Order length, Time delay).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!