Bardet-Biedl syndrome (BBS) is a clinically and genetically heterogeneous autosomal recessive disorder characterized by retinitis pigmentosa, polydactyly, obesity, hypogenitalism, mental retardation, and renal anomalies. To detect linkage to BBS loci, 29 BBS families, of mixed but predominantly European ethnic origin, were typed with 37 microsatellite markers on chromosomes 2, 3, 11, 15, 16, and 17. The results show that an estimated 36-56% of the families are linked to the 11q13 chromosomal site (BBS1) previously described by M. Leppert et al. (1994, Nature Genet. 7, 108-112), with the gene order cen-D11S480-5 cM-BBS1-3 cM-D11S913/D11S987-qter. A further 32-35% of the families are linked to the BBS4 locus, reported by R. Carmi et al. (1995, Hum. Mol. Genet. 4, 9-13) in chromosomal region 15q22.3-q23, with the gene order cen-D15S125-5 cM-BBS4-2 cM-D15S131/D15S204-qter. Three consanguineous BBS families are homozygous for three adjacent chromosome 15 markers, consistent with identity by descent for this region. In one of these families haplotype analysis supports a localization for BBS4 between D15S131 and D15S114, a distance of about 2 cM. Weak evidence of linkage to the 16q21 (BBS2) region reported by A. E. Kwitek-Black et al. (1993, Nature Genet. 5, 392-396) was observed in 24-27% of families with the gene order cen-D16S408-2 cM-BBS2-5 cM-D16S400. A fourth group of families, estimated at 8%, are unlinked to all three of the above loci, showing that at least one other BBS locus remains to be found. No evidence of linkage was found to markers on chromosome 3, corresponding to the BBS3 locus, reported by V. C. Sheffield et al. (1994, Hum. Mol. Genet. 3, 1331-1335), or on chromosome 2 or 17, arguing against the involvement of a BBS locus in a patient with a t(2;17) translocation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/geno.1997.4613 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!