The wild-type and mutant derivatives of the integrase protein of feline immunodeficiency virus (FIV) were cloned and expressed in Escherichia coli. The purified proteins were examined using various model DNA substrates for their catalytic activities: 3'-end processing, 3'-end joining, and disintegration. The reactions required the presence of either Mn2+ or Mg2+ as a divalent cation. The N-terminal and C-subterminal domains (residues 1-52 and 189-235, respectively) were necessary for 3'-end processing and joining reactions but not for disintegration. Substitution of asparagine for the highly conserved aspartic acid at position 118 resulted in a complete loss of all three activities, confirming that the catalytic domain resides in the central core region (residues 53-188) of the protein. Deletion of the C-terminus (residues 236-281) resulted in a FIV integrase mutant that had efficient 3'-end processing and disintegration activities but weak 3'-end joining activity, a finding that has not been reported previously with other retroviral integrases. The result suggests that the C-terminus is the primary binding site for target DNA. Attachment of a histidine-tag at the N-terminus of the wild-type and deletion derivatives increased the binding affinity to the DNA substrate, resulting in altered levels of catalytic activities and selection of integration sites. Similar to other retroviral integrases, certain pairs of mutant derivatives of FIV integrase could complement each other to restitute 3'-end processing and joining activities, suggesting that formation of functional multimers is a general feature of proteins in the integrase family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/viro.1997.8466 | DOI Listing |
J Pharm Biomed Anal
January 2025
Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States. Electronic address:
The dynamic landscape of mRNA technology highlights the need for innovative quality control (QC) strategies. In this study, we described an efficient one-step digestion approach for concurrent generation of 5'- and 3'-end fragments, enabling simultaneous mRNA capping and poly(A) tail analysis. Tailored 10-23-type DNAzymes, designed from 5'- and 3'-Untranslated Regions (UTRs), selectively cleaved mRNA to release both the 5'-Capped or uncapped short fragments and 3'-Poly(A) tail cleavage products.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
Food safety is one of the primary demands of modern society. Mycotoxins are toxic metabolites of food-contaminating fungi. Fungi enter the food chain by infecting crops and irreversibly contaminate them due to the structural stability of mycotoxins.
View Article and Find Full Text PDFRNA Biol
December 2025
Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America.
is an obligate human parasite of the phylum Apicomplexa and is the causative agent of the most lethal form of human malaria. Although N6-methyladenosine modification is thought to be one of the major post-transcriptional regulatory mechanisms for stage-specific gene expression in apicomplexan parasites, the precise base position of m6A in mRNAs or noncoding RNAs in these parasites remains unknown. Here, we report global nucleotide-resolution mapping of m6A residues in using DART-seq technology, which quantitatively displayed a stage-specific, dynamic distribution pattern with enrichment near mRNA 3' ends.
View Article and Find Full Text PDFFront Parasitol
January 2024
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!