The ability of Shigella to enter epithelial cells, to escape from the phagocytic vacuole, and to induce apoptosis in macrophages requires the IpaB, IpaC, and IpaD proteins. An extracellular complex containing IpaB and IpaC can promote the uptake of inert particles by epithelial cells. To determine whether the function of IpaC is to act as an extracellular chaperone for IpaB in the Ipa complex or as an effector of entry involved in a direct interaction with the cell surface, we have constructed eight IpaC recombinant proteins by inserting the coding sequence for a 12- to 14-amino-acid fragment into restriction sites scattered within the ipaC gene. We have investigated the ability of recombinant proteins to bind IpgC in the bacterial cytoplasm and IpaB in the extracellular medium and to complement an ipaC null mutant for entry into HeLa cells, lysis of erythrocytes, and escape from the phagocytic vacuole in infected macrophages. Most recombinant proteins were produced and secreted at a level similar to that of wild-type IpaC and did not exhibit altered susceptibility to proteolysis by trypsin, and all were able to bind IpgC and IpaB. Some recombinant proteins did not complement the ipaC mutant for entry into HeLa cells, lysis of erythrocytes, or escape from the phagocytic vacuole, which indicates that IpaC plays an active role in these processes and does not act solely as a chaperone for IpaB. In addition, some insertions which were located outside of the hydrophobic region of IpaC differentially affected the abilities of Shigella to enter epithelial cells and to lyse cell membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC175181 | PMC |
http://dx.doi.org/10.1128/iai.65.5.1599-1605.1997 | DOI Listing |
Int J Mol Med
March 2025
National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.
Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism.
View Article and Find Full Text PDFInt J Mol Med
March 2025
Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.
View Article and Find Full Text PDFNatl Sci Rev
December 2024
Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France.
Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.
View Article and Find Full Text PDFBMC Cancer
January 2025
Centre for Medical Education, Queen's University Belfast, Belfast City Hospital, Lisburn Road, Belfast, UK.
Background: Myelofibrosis (MF) is a clonal haematopoietic disease, with median overall survival for patients with primary MF only 6.5 years. The most frequent gene mutation found in patients is JAK2, causing constitutive activation of the kinase and activation of downstream signalling.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.
Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!