Historical evolution of circuit models for the electrode-electrolyte interface.

Ann Biomed Eng

Hillenbrand Biomedical Engineering Center, Purdue University, West Lafayette, IN 47907-1293, USA.

Published: April 1997

Electrodes are widely used to measure bioelectric events and to stimulate excitable tissues. In one form or another, electrodes have been around for nearly two centuries; yet our ability to predict their properties is extremely limited, despite considerable research, especially during the last century. This paper chronicles the accumulation of knowledge about the electrode-electrolyte interface as a circuit element. Our understanding of this interface starts with the Helmholtz double layer of charge and progresses through the Warburg and Fricke low-current-density models, which demonstrated that the resistive and capacitive components are polarization elements, the values of which depend on frequency. The discovery by Schwan, showing that the components of the Warburg-Fricke model are current-density dependent, is recounted, along with the discovery of the rectifying properties of the electrode-electrolyte interface and how it was put to practical use. The very high current-density operation of the interface is discussed in terms of gas evolution, arching, and shock-wave production. Finally the evolution of recording electrodes is traced. Because electrodes can be operated over a very wide range of current density, it is unlikely that a single model can be created for the electrode-electrolyte interface, although over a restricted current-density range such a model may be possible.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02738534DOI Listing

Publication Analysis

Top Keywords

electrode-electrolyte interface
16
interface
6
historical evolution
4
evolution circuit
4
circuit models
4
electrode-electrolyte
4
models electrode-electrolyte
4
electrodes
4
interface electrodes
4
electrodes measure
4

Similar Publications

Metallic Zn is a promising anode for high-safety, low-cost, and large-scale energy storage systems. However, it is strongly hindered by unstable electrode/electrolyte interface issues, including zinc dendrite, corrosion, passivation, and hydrogen evolution reactions. In this work, an in situ interface protection strategy is established by turning the corrosion/passivation byproducts (zinc hydroxide sulfates, ZHSs) into a stable hybrid protection layer.

View Article and Find Full Text PDF

Acetonitrile is a low-viscosity solvent that can enhance charge transfer kinetics at the electrode/electrolyte interface, although its cathodic instability limits its demonstration. This study employed a dual-compartment cell separated by a solid electrolyte to demonstrate that an acetonitrile-based electrolyte enhanced the interfacial charge transfer kinetics compared to those of carbonate-based electrolytes.

View Article and Find Full Text PDF

Building electrode/electrolyte interphases in aqueous zinc batteries via self-polymerization of electrolyte additives.

Natl Sci Rev

January 2025

State Key Laboratory of Advanced Chemical Power Sources, Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.

Aqueous zinc batteries offer promising prospects for large-scale energy storage, yet their application is limited by undesired side reactions at the electrode/electrolyte interface. Here, we report a universal approach for the building of an electrode/electrolyte interphase (EEI) layer on both the cathode and the anode through the self-polymerization of electrolyte additives. In an exemplified Zn||VO·nHO cell, we reveal that the glutamate additive undergoes radical-initiated electro-polymerization on the cathode and polycondensation on the anode, yielding polyglutamic acid-dominated EEI layers on both electrodes.

View Article and Find Full Text PDF

The poor reversibility of the zinc anode caused by interfacial side reactions and dendritic growth poses significant constraints on the practical application of aqueous zinc-ion batteries. Herein, a co-solute, acesulfame potassium, with strongly polar, zincophilic guest anions is introduced into a conventional low-concentration aqueous electrolyte. This regulation enhances the electrolyte's ionic conductivity and accelerates the desolvation process of zinc ions at the electrode/electrolyte interface.

View Article and Find Full Text PDF

All-solid-state lithium batteries (ASSBs) are among the most promising energy storage technologies, particularly for electric vehicles, due to their enhanced safety. However, performances of these systems are still hindered by interfacial side reactions at electrode/electrolyte interfaces, especially when sulfide electrolytes are used, and additional issues of mechanical nature. In this work, an ASSB system composed of an argyrodite (LiPSCl) electrolyte, a lithium-rich sulfide cathode (LiTiS) operating at moderate voltage, and a lithium metal anode is investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!