The purposes of this study were to define in sheep a compartmental model for glucose kinetics in the basal condition and to test the hypothesis that interstitial fluid obtained by sampling thoracic duct lymph (TDL) represents one or more peripheral compartments of the glucose model. A bolus of [6,6-(2)H]glucose was injected in nine animals, followed by frequent sampling of blood and TDL. Linear kinetic modeling has been applied to plasma data, indicating that a three-compartment model adequately describes glucose kinetics. Both catenary and mammillary models were identified, and their predictions for the tracer behavior in nonaccessible pools were evaluated. In all experiments, regardless of the model structure, predictions in the compartment most rapidly exchanging with blood (pool 2) well matched the measured tracer-to-tracee ratio in TDL. Furthermore, modeling analysis showed that 90-95% of the tracer in TDL comes from this pool. This supported the physiological identification of a peripheral pool of glucose kinetics as extracellular fluid represented by TDL measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.1997.272.3.E494DOI Listing

Publication Analysis

Top Keywords

glucose kinetics
16
interstitial fluid
8
glucose
5
tdl
5
kinetics interstitial
4
fluid predicted
4
predicted compartmental
4
compartmental modeling
4
modeling purposes
4
purposes study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!