To evaluate whether catabolic levels of glucocorticoids activate the ubiquitin pathway in conjunction with their known proteolytic effect in skeletal muscle, rats were injected daily with corticosterone (CTC; 10 mg/100 g body wt) for 7 days. Two peaks of urinary excretion of 3-methylhistidine (3-MH), a specific marker of myofibrillar proteolysis, were observed at days 1 and 3 (165 and 295% of controls, respectively). Levels of ubiquitin pathway mRNAs in skeletal muscle were assessed around the 3-MH peaks. In the extensor digitorum longus, a first rise of two polyubiquitin (pUb) mRNAs was seen at day 1 (183 and 162% of control for the UbB and UbC transcripts, respectively, P < 0.01). An accumulation of both E2-14k mRNAs (140%, P < 0.02, and 157% of controls, P < 0.01) and proteasome C8 subunit mRNA (222% of control, P < 0.05) was seen at day 2. A second more important peak of induction of pUb mRNA was seen at day 3 (251 and 217% of controls for the UbB and UbC transcripts, respectively, P < 0.001). All transcripts returned to near control levels by day 4. In the soleus, induction of E2-14k mRNA started at day 3 and reached 216 and 208% of controls at day 4 (P < 0.001), whereas an increase of pUb mRNA was observed at days 3 (213 and 241%, P < 0.05) and 4 (211 and 221%, P < 0.001). A rise of proteasome C8 subunit mRNA accumulation was also seen in the soleus at days 3 (217%, P < 0.05) and 4 (157%, P < 0.05). Reduced ubiquitin conjugate levels, possibly due to their rapid degradation through increased proteasome activity, were observed in both muscle types at day 3. The parallel between the catabolic effects of CTC and activation of the ubiquitin pathway in muscles of CTC-treated rats strongly suggests the involvement of this system in glucocorticoid-induced muscular atrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.1997.272.3.C1007DOI Listing

Publication Analysis

Top Keywords

ubiquitin pathway
16
skeletal muscle
12
activation ubiquitin
8
observed days
8
ubb ubc
8
ubc transcripts
8
proteasome subunit
8
subunit mrna
8
pub mrna
8
day
7

Similar Publications

Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases.

J Integr Plant Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.

Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. HO, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) ranks as the fourth leading cause of cancer-related deaths worldwide, with most patients diagnosed at advanced stages due to the absence of reliable early detection biomarkers.

Methods: RNA-sequencing was conducted to identify the differentially expressed genes between GC tissues and adjacent normal tissues. CCK8, EdU, colony formation, transwell, flow cytometry and xenograft assays were adopted to explore the biological function of ZBTB10 and betulinic acid (BA) in GC progression.

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease, encompasses a broad range of hepatic metabolic disorders primarily characterised by the disruption of hepatic lipid metabolism, hepatic lipid accumulation and steatosis. Severe cases of MASLD might progress to metabolic dysfunction-associated steatohepatitis, characterised by hepatic inflammation, hepatocyte ballooning degeneration, activation of hepatic stellate cells (HSCs) and fibrogenesis. It may further progress to hepatocellular carcinoma.

View Article and Find Full Text PDF

Characterization of SARS-CoV-2 Entry Genes in Skeletal Muscle and Impacts of In Vitro Versus In Vivo Infection.

J Cachexia Sarcopenia Muscle

February 2025

Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.

Background: COVID-19 has been associated with both respiratory (diaphragm) and non-respiratory (limb) muscle atrophy. It is unclear if SARS-CoV-2 infection of skeletal muscle plays a role in these changes. This study sought to: 1) determine if cells comprising skeletal muscle tissue, particularly myofibres, express the molecular components required for SARS-CoV-2 infection; 2) assess the capacity for direct SARS-CoV-2 infection and its impact on atrophy pathway genes in myogenic cells; and 3) in an animal model of COVID-19, examine the relationship between viral infection of skeletal muscle and myofibre atrophy within the diaphragm and limb muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!