Adenylate cyclase (AC) and 5'-nucleotidase (NT) activities were measured in the limbic (amygdala, hippocampus) and sensorimotor (cortex, striatum) structures of the brain in three groups of rats: untrained rats and rats which were good and poor learners in training to perform movements involving pushing against an obstruction. After training, AC activity decreased in all structures studied. Activity decreased in the cortex and striatum to a greater extent in good learners, and in the amygdala in poor learners. NT activity decreased in all brain structures apart from the striatum, to a greater extent in rats which were less able to learn to produce movements involving prolonged pushing. The striatum was the only structure in which increases in NT activity occurred, from the lowest initial level in the control group. 1.0 +/- 0.04 microgram P(i)/mg protein/min, to 1.3 +/- 0.1 micrograms P(i)/mg protein/min in poor learners and to 2.0 +/- 0.1 micrograms P(i)/mg protein/min in good learners. Interhemisphere asymmetries in AC activity in the cortex and hippocampus were seen, along with an interhemisphere difference in NT activity in the amygdala. Thus, the activity of enzymes involved in adenine and cAMP biosynthesis changed in different ways in the limbic and sensorimotor structures of the brain, depending on the ability of rats to learn. The increase in NT activity after training of rats, which was limited to the striatum, may reflect a special role for the purinergic system in these structures in mediating sensation-regulated movements.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02359498DOI Listing

Publication Analysis

Top Keywords

structures brain
12
poor learners
12
activity decreased
12
pi/mg protein/min
12
activity
9
adenylate cyclase
8
cyclase 5'-nucleotidase
8
cortex striatum
8
movements involving
8
striatum greater
8

Similar Publications

This study aimed to assess measurement invariance for the Five-Factor Inventory for (Oltmanns & Widiger, 2020) across nine national samples from four continents ( = 6,342), and to validate a French translation in seven French-speaking national samples. All were convenience samples of adults. Exploratory factor analyses supported a four-factor structure in the French-speaking Western samples (Belgium, Canada, France, and Switzerland) while a three-factor structure was preferred in the French-speaking African samples (Burkina Faso and Togo), and no adequate structure was found in the Indian sample.

View Article and Find Full Text PDF

Uncovering the intricacies of IGF-1 in Alzheimer's disease: new insights from regulation to therapeutic targeting.

Inflammopharmacology

January 2025

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.

View Article and Find Full Text PDF

Background: Although invasiveness is one of the major determinants of the poor glioblastoma (GBM) outcome, the mechanisms of GBM invasion are only partially understood. Among the intrinsic and environmental processes promoting cell-to-cell interaction processes, eventually driving GBM invasion, we focused on the pro-invasive role played by Extracellular Vesicles (EVs), a heterogeneous group of cell-released membranous structures containing various bioactive cargoes, which can be transferred from donor to recipient cells.

Methods: EVs isolated from patient-derived GBM cell lines and surgical aspirates were assessed for their pro-migratory competence by spheroid migration assays, calcium imaging, and PYK-2/FAK phosphorylation.

View Article and Find Full Text PDF

The safety of a 2'--methoxyethyl antisense oligonucleotide (ASO) was investigated in Mauritius cynomolgus monkeys in a 41-week Good Laboratory Practice (GLP) toxicity study after multiple intrathecal (IT) administrations. Histopathological examination revealed ectopic formation of lymphoid follicles in the spinal cord (SC) at the injection site at all doses and the presence of granular material in neurons of the SC in high-dose animals. The granular material was seen in all the segments of the SC, but mainly in the lumbar segment and persisted at the end of the 26-week recovery period, while the lymphoid follicles showed a reversibility trend.

View Article and Find Full Text PDF

. To develop an augmentation method that simulates cone-beam computed tomography (CBCT) related motion artifacts, which can be used to generate training-data to increase the performance of artificial intelligence models dedicated to auto-contouring tasks.The augmentation technique generates data that simulates artifacts typically present in CBCT imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!