AI Article Synopsis

  • MMPs are a family of enzymes involved in the degradation of connective tissue and have been linked to inflammatory diseases like multiple sclerosis (MS).
  • BB-1101, an inhibitor of MMP activity and TNF processing, shows promise in reducing symptoms in an animal model of MS (EAE).
  • Research identified a significant increase in matrilysin, an MMP, during disease progression, suggesting its potential role in neuroinflammation and as a target for treatment.

Article Abstract

Matrix metalloproteinases (MMPs) are a large family of Zn2+ endopeptidases that are expressed in inflammatory conditions and are capable of degrading connective tissue macromolecules. MMP-like enzymes are also involved in the processing of a variety of cell surface molecules including the pro-inflammatory cytokine TNF-alpha. MMPs and TNF-alpha have both been implicated in the pathology associated with neuro-inflammatory diseases (NIDs), particularly multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). We have shown that BB-1101, a broad spectrum hydroxamic acid-based combined inhibitor of MMP activity and TNF processing, reduces the clinical signs and weight loss in an acute EAE model in Lewis rats. However, little is known about which MMPs are involved in the neuroinflammatory process. In order to determine the optimum inhibitory profile for an MMP inhibitor in the treatment of NID, we investigated the profile of MMP expression and activity during EAE. The development of disease symptoms was associated with a 3-fold increase in MMP activity in the cerebrospinal fluid (CSF), which could be inhibited by treatment with BB-1101, and an increase in 92 kDa gelatinase activity detected by gelatin substrate zymography. Quantitative PCR analysis of normal and EAE spinal cord revealed the expression of at least seven MMPs. Of these, matrilysin showed the most significant change, being elevated over 500 fold with onset of clinical symptoms and peaking at maximum disease severity. Of the other six MMPs detected, 92 kDa gelatinase showed a modest 5 fold increase which peaked at the onset of clinical signs and then declined during the most severe phase of the disease. Matrilysin was localised by immunohistochemistry to the invading macrophages within the inflammatory lesions of the spinal cord. Matrilysin's potent broad spectrum proteolytic activity and its localisation to inflammatory lesions in the CNS suggest this enzyme could be particularly involved in the pathological processes associated with neuro-inflammatory disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-5728(96)00210-xDOI Listing

Publication Analysis

Top Keywords

matrix metalloproteinase
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
associated neuro-inflammatory
8
broad spectrum
8
mmp activity
8
clinical signs
8
profile mmp
8
kda gelatinase
8
spinal cord
8

Similar Publications

Purpose: This study aims to elucidate on changes in biological pathways in rabbit corneas induced by two methods of light-activated corneal stiffening: topical application of riboflavin with dextran (RF-D) or WST11 with dextran (WST-D) followed by ultraviolet A (UVA) or near-infrared (NIR) illumination, respectively.

Methods: Rabbit corneas were mechanically de-epithelialized, then left untreated (N = 3) or treated with either RF-D/UVA (N = 3) or WST-D/NIR (N = 3). After one week, quantitative proteomics was performed on untreated, RF-D/UVA- and WST-D/NIR-treated corneas.

View Article and Find Full Text PDF

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).

View Article and Find Full Text PDF

Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid.

View Article and Find Full Text PDF

Following traumatic brain injury (TBI), inhibition of the Na-K-Cl cotransporter1 (NKCC1) has been observed to alleviate damage to the blood-brain barrier (BBB). However, the underlying mechanism for this effect remains unclear. This study aimed to investigate the mechanisms by which inhibiting the NKCC1 attenuates disruption of BBB integrity in TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!