Formation of the 4-kDa peptides, which are essential constituents of the extracellular plaques in Alzheimer's disease, involves the sequential cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases. The carboxy-terminal 99-amino-acid peptide which is liberated from APP by beta-secretase was used as a potential native substrate of the gamma-secretase(s). With the addition of an initiator Met and a FLAG sequence at the C-terminus (betaAPP100-FLAG), it was expressed in Escherichia coli under the control of the T7 promotor. The preferred site(s) of cleavage in the N-terminal 40-amino-acid beta-amyloid peptide and betaAPP100-FLAG by potential gamma-secretase(s) were rapidly identified using matrix-assisted laser-desorption/ionization time-of-flight mass spectroscopy in addition to peptide mapping followed by protein sequence analysis. Since gamma-secretases seem to be active at acidic pH, three cathepsins (D, E and B) were selected for testing. Studies using different detergents indicated that the cleavage preference of cathepsin D for the betaAPP100-FLAG is highly dependent on the surfactant used to solubilize this substrate. All three cathepsins were found to be capable of catabolizing both beta-amyloid peptides and the betaAPP100-FLAG. As cathepsin D was found to cleave the betaAPP100-FLAG in the vicinity of the C-terminus of the beta-amyloid peptides and cathepsin B has a high carboxypeptidase activity at low pH, the possibility cannot be excluded that cathepsins D and B are involved in the amyloidogenic processing of APP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1997.00414.x | DOI Listing |
Free Radic Res
January 2025
Department of Biochemistry, Faculty of Medicine, Marmara University, 34854, Istanbul, Turkiye.
Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation.
View Article and Find Full Text PDFHIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag oligomerizes and buds as an immature, non-infectious virus particle, which, upon cleavage of the Gag precursor by the viral protease, transforms into a mature, infectious virion. During maturation, the MA lattice underlying the viral membrane undergoes a structural rearrangement and the newly released capsid (CA) protein forms a mature capsid that encloses the viral genome.
View Article and Find Full Text PDFUnlabelled: Pre-mRNA splicing, carried out in the nucleus by a large ribonucleoprotein machine known as the spliceosome, is functionally and physically coupled to the mRNA surveillance pathway in the cytoplasm called nonsense mediated mRNA decay (NMD). The NMD pathway monitors for premature translation termination signals, which can result from alternative splicing, by relying on the exon junction complex (EJC) deposited on exon-exon junctions by the spliceosome. Recently, multiple genetic screens in human cell lines have identified numerous spliceosome components as putative NMD factors.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Aspartimidylation is a post-translational modification found in multiple families of ribosomally synthesized and post-translationally modified peptides (RiPPs). We recently reported on the imiditides, a new RiPP family in which aspartimidylation is the class-defining modification. Imiditide biosynthetic gene clusters encode a precursor protein and a methyltransferase that methylates a specific Asp residue, converting it to aspartimide.
View Article and Find Full Text PDFClin Appl Thromb Hemost
January 2025
Hemostasis and Thrombosis Research Laboratories, Loyola University Medical Center, Maywood, Illinois, USA.
Introduction: Persistent elevation of biomarkers associated with endothelial dysfunction in convalescent COVID-19 patients has been linked to an increased risk of long-term cardiovascular complications, including long COVID syndrome. Sulodexide, known for its vascular endothelial affinity, has demonstrated pleiotropic protective properties. This study aims to evaluate the impact of sulodexide on serum levels of endothelial dysfunction biomarkers in patients during the convalescent phase of COVID-19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!