Reductive activation of mitomycin C leads to its covalent binding to DNA, forming monoadducts and cross-links. The cytotoxicity of mitomycin C has been attributed to cross-link formation, whereas monoadducts are assumed to cause mutagenicity. We have developed a 32P-postlabeling technique to measure mitomycin C DNA adducts. Using this technique, we have measured monoadduct formation in the shuttle vector plasmid pSP189 and have determined mutations induced by monoadduct formation. The shuttle vector plasmid was incubated with mitomycin C under conditions favoring monofunctional activation of mitomycin C. The plasmid was then replicated in human Ad293 cells, rescued in bacteria, and analyzed for mutations in the supF tRNA gene sequence of pSP189. One major mitomycin C/DNA adduct was observed by 32P-postlabeling and was characterized as a monoadduct of guanine. When pSP189 was exposed to monofunctionally activated mitomycin C, increases in adduct levels and mutation frequency were found to be related to mitomycin C concentration. The majority of the mutations involved single bases, with base substitutions making up 59.1% of the total mutations observed. Of the base substitutions, 67.2% were transversions and 32.8% were transitions, with nearly 80% of all base substitutions involving G:C base pairs. Deletions, either as single bases or large deletions, also involved G:C base pairs the majority of the time. The observed bias of mutations at G:C and the formation of a mitomycin C/DNA monoadduct involving guanine suggests that monoadduct formation may be responsible for the mutations.

Download full-text PDF

Source

Publication Analysis

Top Keywords

shuttle vector
12
vector plasmid
12
monoadduct formation
12
base substitutions
12
mitomycin
10
mutations induced
8
exposed monofunctionally
8
monofunctionally activated
8
activated mitomycin
8
activation mitomycin
8

Similar Publications

SARS-CoV-2 excretion and genetic evolution in nasopharyngeal and stool samples from primary immunodeficiency and immunocompetent pediatric patients.

Virol J

January 2025

Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.

Background: Primary Immunodeficiency disorders (PID) can increase the risk of severe COVID-19 and prolonged infection. This study investigates the duration of SARS-CoV-2 excretion and the genetic evolution of the virus in pediatric PID patients as compared to immunocompetent (IC) patients.

Materials And Methods: A total of 40 nasopharyngeal and 24 stool samples were obtained from five PID and ten IC children.

View Article and Find Full Text PDF

The bimolecular fluorescence complementation (BiFC) technique is a powerful tool for visualizing protein-protein interactions in vivo. It involves genetically fused nonfluorescent fragments of green fluorescent protein (GFP) or its variants to the target proteins of interest. When these proteins interact, the GFP fragments come together, resulting in the reconstitution of a functional fluorescent protein complex that can be observed using fluorescence microscopy.

View Article and Find Full Text PDF

Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types.

View Article and Find Full Text PDF

Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax.

CRISPR J

January 2025

Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated.

View Article and Find Full Text PDF

The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!