The hypothesis that sarcoplasmic reticulum (SR) generates subsarcolemmal [Ca] higher than that in the bulk of sarcoplasm and that it affects the rate of Na+Ca exchange were tested. Voltage clamped cardiomyocytes of guinea-pigs and rats were stimulated by pre-pulses from a holding potential of -80 mV to -40 mV (20 ms) followed by 200 ms depolarizations to +5 mV. Single 5, 10, 20, 30, 50, 100 and 300 ms depolarizations were interposed between 200 ms pulses. The amplitude of the tail (Na/Ca exchange) currents recorded upon repolarization were compared with instantaneous fluorescence on Indo 1 loaded into cells. In both species amplitude of the tail currents were higher during the ascending phase of the Ca transient than during the descending phase, although the fluorescence was lower. The dissociation was abolished by thapsigargin (TG), the blocker of the SR Ca-ATPase. The results suggest that over the initial < 50 ms of the transient the Na/Ca exchangers are exposed to [Ca] higher than that in the bulk sarcoplasm and that it is generated by the SR.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sarcoplasmic reticulum
8
na/ca exchange
8
[ca] higher
8
higher bulk
8
bulk sarcoplasm
8
amplitude tail
8
reticulum release
4
release diadic
4
diadic region
4
region na/ca
4

Similar Publications

Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.

View Article and Find Full Text PDF

Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery.

View Article and Find Full Text PDF

The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups.

View Article and Find Full Text PDF

A key molecular dysfunction in heart failure is the reduced activity of the cardiac sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) in cardiac muscle cells. Reactivating SERCA2a improves cardiac function in heart failure models, making it a validated target and an attractive therapeutic approach for heart failure therapy. However, finding small-molecule SERCA2a activators is challenging.

View Article and Find Full Text PDF

Intracellular Membrane Contact Sites in Skeletal Muscle Cells.

Membranes (Basel)

January 2025

Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.

Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!