The aspartate-99 of secreted phospholipase A2 (PLA2) has been proposed to be critical for the catalytic mechanism and interfacial activation of PLA2. Aspartate-99 connects the catalytic machinery (including the catalytic diad, the putative catalytic waters W5 and W6, and the calcium cofactor) to the hydrogen-bonding network. The latter involves Y52, Y73, the structural water, and the N-terminal region putatively required for the interfacial activation. A triple mutant of bovine pancreatic PLA2 with substitutions aspartate plus adjacent tyrosine residues (Y52,73F/D99N) was constructed, its X-ray structure was determined, and kinetic characteristics were analyzed. The kinetic properties of the D99N mutant constructed previously were also further analyzed. The X-ray structure of the Y52,73F/D99N mutant indicated a substantial disruption of the hydrogen-bonding network including the loss of the structural water similar to that seen in the structure of the D99N mutant published previously [Kumar, A., Sekharudu, Y. C., Ramakrishnan, B., Dupureur, C. M., Zhu, H., Tsai, M.-D., & Sundaralingam, M. (1994) Protein Sci. 3, 2082-2088]. Kinetic analysis demonstrated that these mutants possessed considerable catalytic activity with a k(cat) value of about 5% compared to WT. The values of the interfacial Michaelis constant were also little perturbed (ca. 4-fold lower for D99N and marginally higher for Y52,73F/D99N). The results taken together suggest that the hydrogen-bonding network is not critically important for interfacial activation. Instead, it is the chemical step that is perturbed, though only modestly, in the mutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi961576x | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Beijing Institute of Technology, Research Center of Materials Science, School of Materials Science and Engineering, No.5 South Street of Zhongguancun, Haidian District, 100081, Beijing, CHINA.
Copper (Cu)-based catalysts exhibit distinctive performance in the electrochemical CO2 reduction reaction (CO2RR) with complex mechanism and sophisticated types of products. The management of key intermediates *CO and *H is a necessary factor for achieving high product selectivity, but lack of efficient and versatile strategies. Herein, we designed Pt modified Cu catalysts to effectively modulate the competitive coverage of those intermediates.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
Enzyme-instructed signal generation at liquid-liquid interfaces presents a novel strategy for controlling and detecting biochemical processes on macroscopic scales. Here, we explore the self-assembly and jamming of pillar[5]arene (P[5]A) derivatives at the oil-water interface via a copper-mediated "click" reaction, providing a versatile platform for generating observable signals. The formation of a pillar[5]arenes network at the droplet interface reduces interfacial tension, allowing droplets to adopt various nonequilibrium shapes based on the interfacial jamming process.
View Article and Find Full Text PDFNat Commun
January 2025
School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
Electrocatalytic gas-evolving reactions often result in bubble-covered surfaces, impeding the mass transfer to active sites. Such an issue will be worsened in practical high-current-density conditions and can cause sudden cell failure. Herein, we develop an on-chip microcell-based total-internal-reflection-fluorescence-microscopy to enable operando imaging of bubbles at sub-50 nm and dynamic probing of their nucleation during hydrogen evolution reaction.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China. Electronic address:
The reasonable design of an economical and robust bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is both essential but challenging. Herein, we synthesized a multi-interfacial NiP/WS/CoWO@C hybrid electrocatalyst devived from the heterometallic clusters [Co(TC4A)(WO)Cl][HPWO], in which NiP was incorporated into WS/CoWO@C nanosheets via interfacial interactions by in situ phosphorization processes. Theoretical calculations revealed that moderate electron transfer from CoWO and NiP to WS induced by the multi-heterojunction significantly regulate the binding energies of the reactive intermediates, thus enhacing its intrinsic activity.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!