Evolutionary relationship of the ligand-gated ion channels and the avermectin-sensitive, glutamate-gated chloride channels.

J Mol Evol

Department of Genetics and Molecular Biology, RY80Y-305, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065-0900, USA.

Published: May 1997

Two cDNAs, GluClalpha and GluClbeta, encoding glutamate-gated chloride channel subunits that represent targets of the avermectin class of antiparasitic compounds, have recently been cloned from Caenorhabditis elegans (Cully et al., Nature, 371, 707-711, 1994). Expression studies in Xenopus oocytes showed that GluClalpha and GluClbeta have pharmacological profiles distinct from the glutamate-gated cation channels as well as the gamma-aminobutyric acid (GABA)- and glycine-gated chloride channels. Establishing the evolutionary relationship of related proteins can clarify properties and lead to predictions about their structure and function. We have cloned and determined the nucleotide sequence of the GluClalpha and GluClbeta genes. In an attempt to understand the evolutionary relationship of these channels with the members of the ligand-gated ion channel superfamily, we have performed gene structure comparisons and phylogenetic analyses of their nucleotide and predicted amino acid sequences. Gene structure comparisons reveal the presence of several intron positions that are not found in the ligand-gated ion channel superfamily, outlining their distinct evolutionary position. Phylogenetic analyses indicate that GluClalpha and GluClbeta form a monophyletic subbranch in the ligand-gated ion channel superfamily and are related to vertebrate glycine channels/receptors. Glutamate-gated chloride channels, with electrophysiological properties similar to GluClalpha and GluClbeta, have been described in insects and crustaceans, suggesting that the glutamate-gated chloride channel family may be conserved in other invertebrate species. The gene structure and phylogenetic analyses in combination with the distinct pharmacological properties demonstrate that GluClalpha and GluClbeta belong to a discrete ligand-gated ion channel family that may represent genes orthologous to the vertebrate glycine channels.

Download full-text PDF

Source
http://dx.doi.org/10.1007/pl00006174DOI Listing

Publication Analysis

Top Keywords

gluclalpha gluclbeta
24
ligand-gated ion
20
glutamate-gated chloride
16
ion channel
16
evolutionary relationship
12
chloride channels
12
channel superfamily
12
gene structure
12
phylogenetic analyses
12
chloride channel
8

Similar Publications

Trapping of ivermectin by a pentameric ligand-gated ion channel upon open-to-closed isomerization.

Sci Rep

February 2017

Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel.

Ivermectin (IVM) is a broad-spectrum anthelmintic drug used to treat human parasitic diseases like river blindness and lymphatic filariasis. By activating invertebrate pentameric glutamate-gated chloride channels (GluCl receptors; GluClRs), IVM induces sustained chloride influx and long-lasting membrane hyperpolarization that inhibit neural excitation in nematodes. Although IVM activates the C.

View Article and Find Full Text PDF

Subunit stoichiometry and arrangement in a heteromeric glutamate-gated chloride channel.

Proc Natl Acad Sci U S A

February 2016

Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel

The invertebrate glutamate-gated chloride-selective receptors (GluClRs) are ion channels serving as targets for ivermectin (IVM), a broad-spectrum anthelmintic drug used to treat human parasitic diseases like river blindness and lymphatic filariasis. The native GluClR is a heteropentamer consisting of α and β subunit types, with yet unknown subunit stoichiometry and arrangement. Based on the recent crystal structure of a homomeric GluClαR, we introduced mutations at the intersubunit interfaces where Glu (the neurotransmitter) binds.

View Article and Find Full Text PDF

Functional evaluation of key interactions evident in the structure of the eukaryotic Cys-loop receptor GluCl.

ACS Chem Biol

October 2014

Division of Chemistry & Chemical Engineering and ‡Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States.

The publication of the first high-resolution crystal structure of a eukaryotic Cys-loop receptor, GluClα, has provided valuable structural information on this important class of ligand-gated ion channels (LGIC). However, limited functional data exist for the GluCl receptors. Before applying the structural insights from GluCl to mammalian Cys-loop receptors such as nicotinic acetylcholine and GABA receptors, it is important to ensure that established functional features of mammalian Cys-loop receptors are present in the more distantly related GluCl receptors.

View Article and Find Full Text PDF

The invertebrate glutamate-gated chloride channels (GluCls) are receptor molecules and targets for the avermectin-milbemycin (AM) group of anthelmintics. Mutations in GluCls are associated with ivermectin resistance in the soil dwelling nematode Caenorhabditis elegans and the parasitic nematode Cooperia oncophora. In this study, full-length cDNAs encoding alpha and beta subunits of GluCl were cloned and sequenced in Cylicocyclus nassatus, a common and important cyathostomin nematode parasite of horses.

View Article and Find Full Text PDF

Ivermectin is an oral semi-synthetic lactone anthelmintic agent derived from avermectins isolated from fermentation products of Streptomyces avermitilis. Ivermectin showed a concentration-dependent inhibitory effect on motility of a free-living nematode, Caenorhabditis elegans (C. elegans).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!