Localization of guanylate cyclase-activating protein 2 in mammalian retinas.

Proc Natl Acad Sci U S A

Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA 98195, USA.

Published: April 1997

Guanylate cyclase-activating proteins (GCAP1 and GCAP2) are thought to mediate the intracellular stimulation of guanylate cyclase (GC) by Ca2+, a key event in recovery of the dark state of rod photoreceptors after exposure to light. GCAP1 has been localized to rod and cone outer segments, the sites of phototransduction, and to photoreceptor synaptic terminals and some cone somata. We used in situ hybridization and immunocytochemistry to localize GCAP2 in human, monkey, and bovine retinas. In human and monkey retinas, the most intense immunolabeling with anti-GCAP2 antibodies was in the cone inner segments, somata, and synaptic terminals and, to a lesser degree, in rod inner segments and inner retinal neurons. In bovine retina, the most intense immunolabeling was in the rod inner segments, with weaker labeling of cone myoids, somata, and synapses. By using a GCAP2-specific antibody in enzymatic assays, we confirmed that GCAP1 but not GCAP2 is the major component that stimulates GC in bovine rod outer segment homogenates. These results suggest that although GCAP1 is involved in the Ca2+-sensitive regulation of GC in rod and cone outer segments, GCAP2 may have non-phototransduction functions in photoreceptors and inner retinal neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC20792PMC
http://dx.doi.org/10.1073/pnas.94.9.4727DOI Listing

Publication Analysis

Top Keywords

inner segments
12
guanylate cyclase-activating
8
gcap1 gcap2
8
rod cone
8
cone outer
8
outer segments
8
synaptic terminals
8
human monkey
8
intense immunolabeling
8
rod inner
8

Similar Publications

Background: While vaccination remains crucial in mitigating the impact of the COVID-19 pandemic, several ocular adverse events has been reported, including Acute Zonal Occult Outer Retinopathy (AZOOR) complex.

Case Presentation: A 31-year-old female presented declined best corrected visual acuity (BCVA) and flashes in both eyes three days following second recombinant mRNA COVID-19 vaccine (Moderna). Fundus autofluorescence (FAF) illustrated speckled hyper-AF lesions surrounding right eye torpedo maculopathy site and hyper-AF lesions in the left macula.

View Article and Find Full Text PDF

Purpose: Cochlear implants (CI) are the most successful bioprosthesis in medicine probably due to the tonotopic anatomy of the auditory pathway and of course the brain plasticity. Correct placement of the CI arrays, respecting the inner ear anatomy are therefore important. The ideal trajectory to insert a cochlear implant array is defined by an entrance through the round window membrane and continues as long as possible parallel to the basal turn of the cochlea.

View Article and Find Full Text PDF

Rod and cone photoreceptor cells are specialized neurons responsible for transforming the information reaching the eyes in the form of photons into the language of neuronal activity. Rods are the most prevalent photoreceptor type, primarily responsible for light detection under conditions of limited illumination. Here we demonstrate that human rods have a morphological organization unique among all described species, whereby the cell soma extends alongside the light-sensitive outer segment compartment to form a structure we have termed the "accessory inner segment.

View Article and Find Full Text PDF

Bacillary layer detachment: Updates on its clinical and prognostic significance in retinal disease.

Surv Ophthalmol

January 2025

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele-Milan, Italy; Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, via Mazzini 11, Bergamo, Italy.

Bacillary layer detachment (BALAD) refers to the distinctive splitting at the level of the photoreceptor inner segment myoid and accumulation of intraretinal fluid, as seen on optical coherence tomography (OCT).BALAD is an increasingly recognized OCT biomarker of numerous heterogeneous chorioretinal diseases, including posterior uveitis, age-related macular degeneration and macular neovascularization, neoplastic and paraneoplastic retinal disorders, rhegmatogenous retinal detachment, blunt ocular trauma, and miscellaneous conditions. The recognition of BALAD is clinically relevant because, based on the specific etiology, BALAD may require simple observation, ocular or systemic medical treatment, or even surgical intervention, with subsequent different prognosis.

View Article and Find Full Text PDF

Anatomy-driven segmentation of parafoveal optical coherence tomography (OCT) measures may improve associations with clinical outcomes in multiple sclerosis.

J Neurol

January 2025

Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.

Background: Previous investigations on optical coherence tomography (OCT) in multiple sclerosis (MS) focused on generalizable macular and peri-papillary regions without considering the anatomic variations of the retinal layer thickness.

Objective: This study aimed to assess the utility of parafoveal retinal layer thickness measured by OCT, underscoring its relationships with clinical outcomes in MS.

Methods: In this cross-sectional study, 214 people with MS (pwMS) and 57 age- and sex-matched healthy controls (HCs) were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!