The aim of the present study was to investigate possible changes of inositol 1,4,5-trisphosphate (IP3) mass in Torpedo cholinergic synaptosomes in conditions promoting stimulated acetylcholine (ACh) release. For this purpose, we used a radioreceptor IP3 mass assay and a chemiluminescent method for ACh detection. Torpedo cholinergic synaptosomes have consistent IP3 mass levels under resting conditions. The IP3 mass was neither modified by changes in external Ca2+ nor by a Ca(2+)-free medium containing EGTA. IP3 mass and ACh release, measured in the same conditions and in parallel, were increased by depolarization with high K+ and by the ionophores A-23/87 and gramicidin-D in a manner dependent on external Ca2+ emphasizing that Ca2+ entry, independently of the influx mechanism involved, leads to an IP3 increase. The phospholipase C beta inhibitors U-73122 and U-73343 reduced K(+)-stimulated IP3 levels while K(+)-evoked ACh release was almost completely blocked suggesting an additional effect of these drugs on depolarization-neurotransmitter secretion coupling. The effect reported showing an increase of IP3 by agents that stimulate ACh release may suggest a possible link between IP3 metabolism and the neurotransmitter release mechanism. However, such a link is probably not a direct one as implied by the results obtained with the inhibitors of phospholipase C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0197-0186(96)00046-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!