1(S),3(R)-dihydroxy-20(R)-(5'-ethyl-5'-hydroxy-hepta-1'(E),3' (E)-dien-1'-yl)-9,10-secopregna-5(Z),7(E),10(19)-triene (EB1089) is a novel synthetic analog of 1 alpha,25-dihydroxyvitamin D [1,25-(OH)2D3] with potential for use in the treatment of hyperproliferative disorders. It has an altered side-chain structure compared to 1,25-(OH)2D3, featuring 26,27 dimethyl groups, insertion of an extra carbon atom (24a) at C-24, and two double bonds at C-22,23 and C-24,24a. In vitro metabolism of EB1089 was studied in a human keratinocyte cell model, HPK1A-ras, previously shown to metabolize 1,25-(OH)2D3. Four metabolites were formed, all of which possessed the same UV chromophore as EB1089, indicating the retention of the side-chain conjugated double bond system. Two metabolites were present in sufficient quantities to identify them as 26-hydroxy EB1089 (major product) and 26a-hydroxy EB1089 (minor product), based on mass spectral analysis and cochromatography with synthetic standards. Similar metabolites were generated in vivo and using a liver postmitochondrial fraction in vitro (Kissmeyer et al., companion paper). Studies with the human hepatoma Hep G2 gave rise to 2 isomers of 26-hydroxy EB1089. Studies using ketoconazole, a general cytochrome P450 inhibitor, implicated cytochrome P450s in the formation of the EB1089 metabolites. COS-1 transfection cell experiments using vectors containing CYP27 and CYP24 suggest that these cytochrome P450s are probably not involved in 26- or 26a-hydroxylation of EB1089. Other experiments that examined the HPK1A-ras metabolism of related analogs containing only a single side-chain double bond: 1(S),3(R)-dihydroxy-20(R)-(5'-ethyl-5'-hydroxy-hepta-1' (E)-en-1'-yl)-9,10-secopregna-5(Z),7(E),10(19)-triene (MC1473; double bond at C-22,23) and 1(S),3(R)-dihydroxy-20(R)-(5'-ethyl-5'-hydroxy-hepta-3'(E)-en-1'-yl)-9, 10-secopregna-5(Z),7(E),10(19)-triene (MC1611; double bond at C-24,24a) revealed that the former compound was subject to 24-hydroxylation and the latter compound was mainly 23-hydroxylated. Metabolism experiments involving EB1089, MC1473, and MC1611 in competition with [1 beta-3H]1,25-(OH)2D3 in HPK1A-ras confirmed that CYP24 is probably not involved in the metabolism of EB1089 whereas, in the case of MC1473 and MC1611, it does appear to carry out side-chain hydroxylation. Our interpretation is that the conjugated double bond system in the side-chain of EB1089 is responsible for directing the target cell hydroxylation to the distal positions, C-26 and C-26a. We conclude that EB1089 is slowly metabolized via unique in vitro metabolic pathways, and that these features may explain the relative stability of EB1089 compared to other analogs in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-2952(96)00815-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!