Human endothelial cells express thrombin receptors and PAR-2, the two known members of the family of protease-activated G protein-coupled receptors. Because previous studies have shown that the biology of the human thrombin receptor varies according to the cell in which it is expressed, we have taken advantage of the presence of both receptors in endothelial cells to examine the enabling and disabling interactions with candidate proteases likely to be encountered in and around the vascular space to compare the responses elicited by the two receptors when they are present in the same cell and to compare the mechanisms of thrombin receptor and PAR-2 clearance and replacement in a common cellular environment. Of the proteases that were tested, only trypsin activated both receptors. Cathepsin G, which disables thrombin receptors, had no effect on PAR-2, while urokinase, kallikrein, and coagulation factors IXa, Xa, XIa, and XIIa neither substantially activated nor noticeably disabled either receptor. Like thrombin receptors, activation of PAR-2 caused pertussis toxin-sensitive phospholipase C activation as well as activation of phospholipase A2, leading to the release of PGI2. Concurrent activation of both receptors caused a greater response than activation of either alone. It also abolished a subsequent response to the PAR-2 agonist peptide, SLIGRL, while only partially inhibiting the response to the agonist peptide, SFLLRN, which activates both receptors. After proteolytic or nonproteolytic activation, PAR-2, like thrombin receptors, was cleared from the endothelial cell surface and then rapidly replaced with new receptors by a process that does not require protein synthesis. Selective activation of either receptor had no effect on the clearance of the other. These results suggest that the expression of both thrombin receptors and PAR-2 on endothelial cells serves more to extend the range of proteases to which the cells can respond than it does to extend the range of potential responses. The results also show that proteases that can disable these receptors can distinguish between them, just as do most of the proteases that activate them. Finally, the residual response to SFLLRN after activation of thrombin receptors and PAR-2 raises the possibility that a third, as yet unidentified member of this family is expressed on endothelial cells, one that is activated by neither thrombin nor trypsin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.272.17.11133 | DOI Listing |
Semin Thromb Hemost
January 2025
Department of Neurology, Sheba Medical Center, Tel Ha'Shomer, Israel.
Coagulation factors are intrinsically expressed in various brain cells, including astrocytes and microglia. Their interaction with the inflammatory system is important for the well-being of the brain, but they are also crucial in the development of many diseases in the brain such as stroke and traumatic brain injury. The cellular effects of coagulation are mediated mainly by protease-activated receptors.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Department of Medicine, McMaster University; Department of Biochemistry and Biomedical Sciences, McMaster University; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences.
Thrombin is the central mediator of hemostasis, where it converts fibrinogen to fibrin, activates upstream factors to promote coagulation, activates factor XIII and thrombin-activatable fibrinolysis inhibitor to stabilize fibrin, mediates anticoagulation, and modulates cellular activity via cell surface receptors. Thus, regulation of thrombin activity is essential to the hemostatic balance. Thrombin is regulated by positively charged surface domains that surround the active site.
View Article and Find Full Text PDFBMJ Open Respir Res
January 2025
Murdoch Children's Research Institute, Parkville, Victoria, Australia.
Background: The most common cause of death in those with cystic fibrosis (CF) is respiratory failure due to bronchiectasis resulting from repeated cycles of respiratory infection and inflammation. Protease-activated receptor 1 (PAR1) is a cell surface receptor activated by serine proteases including neutrophil elastase, which is recognised as a potent modulator of inflammation. While PAR1 is known to play an important role in regulating inflammation, nothing is known about any potential role of this receptor in CF pathogenesis.
View Article and Find Full Text PDFJ Pharmacol Sci
February 2025
Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.
The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.
View Article and Find Full Text PDFThromb Res
February 2025
Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Dublin, Ireland. Electronic address:
Background: Tumour type, treatment and patient related factors contribute to cancer associated venous thromboembolism (VTE), however, the role of each factor and the mechanisms involved are not understood.
Aim: To assess the role of the tumour, and of chemotherapy, in mediating the procoagulant response associated with VTE in gynaecological cancer patients.
Methods: Gynaecological cancer patients who developed VTE during follow-up (n = 59) (VTE+) were matched with treatment naïve(treatment (-)(VTE-)(n = 120) and chemotherapy treated patients(treatment (+)(VTE-) (n = 57)).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!