MCP-3 is a beta chemokine consisting of 76 amino acid residues. It has been described to be involved in the activation of all leukocytic cells, activation mediated by the presence of multiple binding sites on the target cells. Its three-dimensional structure has been studied by making use of two-dimensional 1H NMR spectroscopy. MCP-3 exhibits the same monomeric structure as the other chemokines, i.e., a three-stranded antiparallel beta sheet covered on one face by an alpha helix. Although it belongs to the same subfamily as RANTES (Chung et al., 1995; Faitbrother et al., 1994) and hMIP-1beta (Lodi et al., 1994), the MCP-3 dimer is folded like IL-8 with the so-called alphabeta sandwich structural motif. Structural and sequence analysis gives clear indications suggesting that the other MCP chemokines may have the same quaternary structure, contrary to the other beta chemokines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi9627929DOI Listing

Publication Analysis

Top Keywords

three-dimensional structure
8
two-dimensional nmr
8
nmr spectroscopy
8
spectroscopy mcp-3
8
determination three-dimensional
4
structure
4
structure chemokine
4
chemokine monocyte
4
monocyte chemoattractant
4
chemoattractant protein
4

Similar Publications

Motor modules are largely unaffected by pathological walking biomechanics: a simulation study.

J Neuroeng Rehabil

January 2025

Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA.

Background: Motor module (a.k.a.

View Article and Find Full Text PDF

This paper presents an all-optical 4 × 2 encoder based on graphene-plasmonic waveguides for operation in the wavelength range of 8-12 μm. The basic plasmonic waveguide consists of a silicon (Si) strip and a graphene sheet supported by two dielectric ridges. Surface plasmon polaritons (SPPs) are stimulated in the spatial gap between the graphene sheet and the Si strip.

View Article and Find Full Text PDF

Identification and characterization of GRAS genes in passion fruit (Passiflora edulis Sims) revealed their roles in development regulation and stress response.

Plant Cell Rep

January 2025

Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

Twenty-nine GRAS genes were identified in passion fruit, the N-terminal regions and 3D (three-dimensional) structures were closely related with their tissue-specific expression patterns. Candidate PeGRASs for enhancing stress resistance were identified. Passion fruit (Passiflora edulis Sims) is a tropical fruit crop with significant edible and ornamental value, but its growth and development are highly sensitive to environmental conditions.

View Article and Find Full Text PDF

Emerging Microfluidic Building Blocks for Cultured Meat Construction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

Cultured meat aims to produce meat mass by culturing cells and tissues based on the muscle regeneration mechanism, and is considered an alternative to raising and slaughtering livestock. Hydrogel building blocks are commonly used as substrates for cell culture in tissue engineering and cultured meat because of their high water content, biocompatibility, and similar three-dimensional (3D) environment to the cellular niche . With the characteristics of precise manipulation of fluids, microfluidics exhibits advantages in the fabrication of building blocks with different structures and components, which have been widely applied in tissue regeneration.

View Article and Find Full Text PDF

In this study, soybean protein isolate (SPI) / bacterial cellulose (BC) co-assemblies replicate the fibrous network structure in animal fat to stabilize the 3D-printed high internal phase Pickering emulsion (HIPPE) gels with excellent processing characteristics. The SPI/BC co-assemblies, structured through pH shifting treatment, displayed exceptional emulsification and gelation properties. The relevant results indicate that the SPI/BC co-assemblies possess numerous hydrophobic and thiol groups on their surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!