Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced, irradiated tumor vaccines induce potent, T-cell-mediated antitumor immune responses in preclinical models. We report the initial results of a Phase I trial evaluating this strategy for safety and the induction of immune responses in patients with metastatic renal cell carcinoma (RCC). Patients were treated in a randomized, double-blind dose-escalation study with equivalent doses of autologous, irradiated RCC vaccine cells with or without ex vivo human GM-CSF gene transfer. The replication-defective retroviral vector MFG was used for GM-CSF gene transfer. No dose-limiting toxicities were encountered in 16 fully evaluable patients. GM-CSF gene-transduced vaccines were equivalent in toxicity to nontransduced vaccines up to the feasible limits of autologous tumor vaccine yield. No evidence of autoimmune disease was observed. Biopsies of intradermal sites of injection with GM-CSF gene-transduced vaccines contained distinctive macrophage, dendritic cell, eosinophil, neutrophil, and T-cell infiltrates similar to those observed in preclinical models of efficacy. Histological analysis of delayed-type hypersensitivity responses in patients vaccinated with GM-CSF-transduced vaccines demonstrated an intense eosinophil infiltrate that was not observed in patients who received nontransduced vaccines. An objective partial response was observed in a patient treated with GM-CSF gene-transduced vaccine who displayed the largest delayed-type hypersensitivity conversion. No replication-competent retrovirus was detected in vaccinated patients. This Phase I study demonstrated the feasibility, safety, and bioactivity of an autologous GM-CSF gene-transduced tumor vaccine for RCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084516PMC

Publication Analysis

Top Keywords

gm-csf gene-transduced
20
gene transfer
12
bioactivity autologous
8
autologous irradiated
8
renal cell
8
cell carcinoma
8
granulocyte-macrophage colony-stimulating
8
colony-stimulating factor
8
immune responses
8
preclinical models
8

Similar Publications

Among cancer immunotherapies, granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced tumor cell vaccine (GVAX) therapies appear promising and have been shown to be safe and effective in multiple clinical trials. However, the antitumor efficacies of GVAX therapy alone are in some cases limited. Here we showed that GVAX therapy targeting cancer stem cells (CSCs) substantially suppressed tumor development in syngeneic immunocompetent mice recapitulating normal immune systems.

View Article and Find Full Text PDF

BLT1 is a high-affinity receptor for leukotriene B4 (LTB4) that is a potent lipid chemoattractant for myeloid leukocytes. The role of LTB4/BLT1 axis in tumor immunology, including cytokine-based tumor vaccine, however, remains unknown. We here demonstrated that BLT1-deficient mice rejected subcutaneous tumor challenge of GM-CSF gene-transduced WEHI3B (WGM) leukemia cells (KO/WGM) and elicited robust antitumor responses against second tumor challenge with WEHI3B cells.

View Article and Find Full Text PDF

Dendritic cell (DC) immunotherapy for cancer certainly holds promises but definitely needs improvements, especially for enhancing tumor-specific responses able to eradicate preexisting tumors. To this end, we investigated here, for the treatment of a preimplanted murine renal cell carcinoma Renca, a new vaccination approach combining injection of DC and granulocyte macrophage colony-stimulating factor (GM-CSF) gene-transduced tumor cells. When treatment by either DC or Renca-mGM-CSF cells alone had no therapeutic effect at all, combined vaccines induced therapeutic response in 50% of the tumor-bearing mice, in a GM-CSF dose-dependent manner.

View Article and Find Full Text PDF

Ex vivo large-scale generation of human red blood cells from cord blood CD34+ cells by co-culturing with macrophages.

Int J Hematol

May 2008

4th Department of Internal Medicine, Sapporo Medical University, School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Japan.

We generated red blood cells (RBC) from cord blood (CB) CD34+ cells using a four-phase culture system. We first cultured CB CD34+ cells on telomerase gene-transduced human stromal cells in serum-free medium containing stem cell factor (SCF), Flt-3/Flk-2 ligand, and thrombopoietin to expand CD34+ cells (980-fold) and the total cells (10,400-fold) (first phase). Expanded cells from the first phase were liquid-cultured with SCF, interleukin-3 (IL-3), and erythropoietin (EPO) to expand (113-fold) and differentiate them into erythroblasts (second phase).

View Article and Find Full Text PDF

Efficacy of ZnPcS2P2 photodynamic therapy solely or with tumor vaccines on mouse tumor models.

Photodiagnosis Photodyn Ther

June 2007

Fujian Institute of Hematology, Union Hospital, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China.

Background And Objectives: Granulocyte-macrophage colony-stimulating factor (GM-CSF) and B7.1 transduced tumor vaccine cells could induce efficient anti-tumor immune response. It is interesting to study whether they could be an adjuvant to photodynamic therapy (PDT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!