Gating of the yeast K+ channel encoded by the Saccharomyces cerevisiae gene TOK1, unlike other outward-rectifying K+ channels that have been cloned, is promoted by membrane voltage (inside positive-going) and repressed by extracellular K+. When expressed in Xenopus laevis oocytes, the TOK1p current rectified strongly outward, its activation shifting in parallel with the K+ equilibrium potential when the external K+ concentration ([K+]o) was increased above 3 mM. Analysis of the TOK1p current indicated that two kinetic components contributed to the conductance and the voltage sensitivity of the conductance. By contrast, the [K+]o sensitivity of the current was accommodated entirely within the slow-relaxing component; it was diminished near 1 mM [K+]o, and at submillimolar concentrations the voltage dependence of the TOK1p conductance was insensitive to [K+]o. External Rb+, the K+ channel blockers Cs+ and Ba2+--but not Na+, Ca2+ or Mg2+--substituted for K+ in control of TOK1p activation, indicating a specificity in cation interaction with the TOK1p gate. These and additional results indicate that external K+ acts as a ligand to inactivate the TOK1p channel, and they implicate a gating process mediated by a single cation binding site within the membrane electric field, but distinct from the permeation pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(97)00211-1DOI Listing

Publication Analysis

Top Keywords

channel encoded
8
gene tok1
8
tok1p current
8
tok1p
6
extracellular ba2+
4
ba2+ mediate
4
mediate voltage-dependent
4
voltage-dependent inactivation
4
inactivation outward-rectifying
4
channel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!