Mutations in the ATM gene are responsible for the multisystem disorder ataxia-telangiectasia, characterized by neurodegeneration, immune deficiency and cancer predisposition. While no alternative splicing was identified within the coding region, the first four exons of the ATM gene, which fall within the 5'untranslated region (UTR), undergo extensive alternative splicing. We identified 12 different 5'UTRs that show considerable diversity in length and sequence contents. These mRNA leaders, which range from 150 to 884 nucleotides (nt), are expected to form variable secondary structures and contain different numbers of AUG codons. The longest 5'UTR contains a total of 18 AUGs upstream of the translation start site. The 3'UTR of 3590 nt is contained within a single 3'exon. Alternative polyadenylation results in 3'UTRs of varying lengths. These structural features suggest that ATM expression might be subject to complex post-transcriptional regulation, enabling rapid modulation of ATM protein level in response to environmental stimuli or alterations in cellular physiological states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC146671PMC
http://dx.doi.org/10.1093/nar/25.9.1678DOI Listing

Publication Analysis

Top Keywords

atm gene
12
complex post-transcriptional
8
post-transcriptional regulation
8
alternative splicing
8
splicing identified
8
atm
5
ataxia-telangiectasia structural
4
structural diversity
4
diversity untranslated
4
untranslated sequences
4

Similar Publications

Objective: This study investigates the mechanism underlying sorafenib resistance in hepatocellular carcinoma cells (HCC), focusing on DNA damage repair (DDR) pathways to develop targeted therapeutic strategies.

Methods: Bioinformatics analysis was used to screen genes associated with sorafenib resistance, which was further demonstrated by western blotting. Cell proliferation was determined using the EdU assay.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is well characterized in terms of genetic mutations and the mechanisms by which they contribute to carcinogenesis. Mutations in APC, TP53, and KRAS are common in CRC, indicating key roles for these genes in tumor development and progression. However, for certain tumors with low frequencies of these mutations that are defined by tumor location and molecular phenotypes, a carcinogenic mechanism dependent on BRAF mutations has been proposed.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at distant sites such as joints. The objective of this study was to use the equine model of naturally occurring obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) towards improved understanding of the interplay between microbiome and immune transcriptome in OA pathophysiology.

Methods: Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males).

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

Los olvidados: Non-BRCA variants associated with Hereditary breast cancer in Mexican population.

Breast Cancer Res

January 2025

Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.

Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!