One of the first steps in HIV gene expression is the recruitment of Tat protein to the transcription machinery after its binding to the RNA response element TAR. Starting from a pool of 3.2 x 10(6) individual chemical entities, we were able to select a hybrid peptoid/peptide oligomer of 9 residues (CGP64222) that was able to block the formation of the Tat/TAR RNA complex in vitro at nanomolar concentrations. NMR studies demonstrated that the compound binds similarly to polypeptides derived from the Tat protein and induces a conformational change in TAR RNA at the Tat-binding site. In addition, 10-30 microM CGP64222 specifically inhibited Tat activity in a cellular Tat-dependent transactivation assay [fusion-induced gene stimulation (FIGS) assay] and blocked HIV-1 replication in primary human lymphocytes. By contrast, peptides of a comparable size and side-chain composition inhibited cell fusion in the FIGS assay and only partially inhibited HIV-1 replication in primary human lymphocytes. Thus, we have discovered a compound, CGP64222, that specifically inhibits the Tat/TAR RNA interaction, both in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC20476 | PMC |
http://dx.doi.org/10.1073/pnas.94.8.3548 | DOI Listing |
Commun Biol
November 2024
Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE.
The mouse mammary tumor virus (MMTV) encodes a 5' element crucial for transcription of its genome along with the Rem/Rem-responsive element (RmRE) responsible for nuclear export of this unspliced RNA. Whether the 5' element is Rem-responsive or has any functional interaction with host/viral factors to facilitate MMTV gene expression was tested in this study. Our results reveal that the 5' element is non-responsive to Rem, but can be transactivated by both HIV Tat and HTLV-1 Tax activators.
View Article and Find Full Text PDFChemistry
January 2025
Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France.
This study presents efficient synthetic pathways for preparing novel azaspirocycles. These methodologies involve functionalizing key bicyclic hydrazines with a substituent on one of their bridgehead carbon atoms. The desired spirocyclic cores were successfully obtained through double reductive amination reactions, intramolecular cyclizations, and cleavages of the N-N bond.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2023
Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
The HIV-1 transactivator protein Tat interacts with the transactivation response element (TAR) at the three-nucleotide UCU bulge to facilitate the recruitment of transcription elongation factor-b (P-TEFb) and induce the transcription of the integrated proviral genome. Therefore, the Tat-TAR interaction, unique to the virus, is a promising target for developing antiviral therapeutics. Currently, there are no FDA-approved drugs against HIV-1 transcription, suggesting the need to develop novel inhibitors that specifically target HIV-1 transcription.
View Article and Find Full Text PDFInt J Mol Sci
May 2023
Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju 363951, Republic of Korea.
Human immunodeficiency virus-1 (HIV-1) transactivator (Tat)-mediated transcription is essential for HIV-1 replication. It is determined by the interaction between Tat and transactivation response (TAR) RNA, a highly conserved process representing a prominent therapeutic target against HIV-1 replication. However, owing to the limitations of current high-throughput screening (HTS) assays, no drug that disrupts the Tat-TAR RNA interaction has been uncovered yet.
View Article and Find Full Text PDFBMC Infect Dis
March 2023
Human Metabolomics, North-West University, Potchefstroom, South Africa.
HIV-1 remains a global health concern and to date, nearly 38 million people are living with HIV. The complexity of HIV-1 pathogenesis and its subsequent prevalence is influenced by several factors including the HIV-1 subtype. HIV-1 subtype variation extends to sequence variation in the amino acids of the HIV-1 viral proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!