The development of transgenic technology, whereby genes (or mutations) can be stably introduced into the germline of experimental mammals, now allows investigators to create mice of virtually any genotype and to assess the consequences of these mutations in the context of a developing and intact mammal. In contrast to traditional "gain-of-function" mutations, typically created by microinjection of the gene of interest into the one-celled zygote, gene targeting via homologous recombination in pluripotential embryonic stem cells allows one to modify precisely the gene of interest. The purpose of this review is to introduce the reader to the history of development of embryonic stem cell technology, the current methods employed to create "knock-out" mice, and the application of these methods to solve problems in biology. While the technology promises to provide enormous insight into mammalian development genetics, our desire is that this review will stimulate the application of gene targeting in embryonic stem cells to begin to unravel problems in complex regulatory pathways, specifically intermediary metabolism and physiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s001090050105 | DOI Listing |
J Nanobiotechnology
January 2025
Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy.
View Article and Find Full Text PDFAdv Drug Deliv Rev
January 2025
Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel; Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.
Self-renewal capacity and potential to differentiate into almost any cell type of the human body makes pluripotent stem cells a valuable starting material for manufacturing of clinical grade cell therapies. Neurodegenerative diseases are characterized by gradual loss of structure or function of neurons, often leading to neuronal death. This results in gradual decline of cognitive, motor, and physiological functions due to the degeneration of the central nervous systems.
View Article and Find Full Text PDFCell Stem Cell
January 2025
State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China. Electronic address:
Imprinting abnormalities pose a significant challenge in applications involving embryonic stem cells, induced pluripotent stem cells, and animal cloning, with no universal correction method owing to their complexity and stochastic nature. In this study, we targeted these defects at their source-embryos from same-sex parents-aiming to establish a stable, maintainable imprinting pattern de novo in mammalian cells. Using bi-paternal mouse embryos, which exhibit severe imprinting defects and are typically non-viable, we introduced frameshift mutations, gene deletions, and regulatory edits at 20 key imprinted loci, ultimately achieving the development of fully adult animals, albeit with a relatively low survival rate.
View Article and Find Full Text PDFTalanta
January 2025
Department of Laboratory Medicine, Taihe hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell research, Hubei University of Medicine, Shiyan, 442000, Hubei, China; Clinical molecular diagnostic center, Taihe hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China. Electronic address:
Endothelial-to-mesenchymal transition (EndMT) plays a crucial role in the initiation and progression of atherosclerosis and various disease processes. Cluster of differentiation 31 (CD31) is a significant marker in EndMT. Detecting CD31 is essential for early-stage monitoring of EndMT and diagnosing atherosclerosis.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Barts Cancer Institute, Queen Mary University of London;
Erythropoiesis, a remarkably dynamic and efficient process responsible for generating the daily quota of red blood cells (approximately 280 ± 20 billion cells per day), is crucial for maintaining individual health. Any disruption in this pathway can have significant consequences, leading to health issues. According to the World Health Organization, an estimated 25% of the global population presents symptoms of anemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!