The effect of the timing of treatment with the ATP-regulated potassium channel agonist BMS-180448 was evaluated in isolated rat heart and ferret models of ischemia and reperfusion. In rat hearts, 10 microM BMS-180448, given before and after global ischemia as well as only during reflow, improved reperfusion contractile function and attenuated lactic dehydrogenase release, although reperfusion-only treatment was less effective. Cromakalim (10 microM) and bimakalim (10 microM) treatment before and after global ischemia afforded a degree of protection similar to that of BMS-180448, although they were not cardioprotective when given only during reperfusion. Pre- and post-treatment cardioprotection were abolished by glyburide. Ischemia/reperfusion significantly increased cytosolic calcium concentration ([Ca++]i) and BMS-180448 given only during reperfusion attenuated this change. In anesthetized ferrets, BMS-180448 (2 mg/kg) or vehicle was infused i.v. during a 40-min interval beginning 1) 10 min before coronary occlusion, 2) at the 45th min of ischemia or 3) at the 5th min of reperfusion. Preocclusion administration of BMS-180448 was associated with a 35% reduction in infarct damage from that recorded in vehicle-treated control ferrets. Drug administered at the midpoint of ischemia reduced infarct size approximately 44%, whereas delaying BMS-180448 infusion until the 5th min of reperfusion reduced, but still provided a significant (17%) level of salvage. The favorable effects of BMS-180448 in the ferret were not associated with changes in either collateral blood flow or peripheral hemodynamics. Thus BMS-180448 shows some protective effects when given only during reperfusion. Cromakalim and bimakalim did not exert similar actions and the difference may be secondary to the faster penetration of BMS-180448.
Download full-text PDF |
Source |
---|
Arch Pharm Res
April 2008
Department of Applied Biochemistry, Division of Life Science, College of Biomedical and Health Science, Konkuk University, 322 Danwol-Dong, Chungju, Korea.
The cardioprotective effects of KR-31762, a newly synthesized K+(ATP) opener, were evaluated in rat models of ischemia/reperfusion (I/R) heart injury. In isolated rat hearts subjected to 30-min global ischemia followed by 30-min reperfusion, KR-31762 (3 and 10 microM) significantly increased the left ventricular developed pressure (LVDP) and double product (heart rate x LVDP) after 30-min reperfusion in a concentration-dependent manner, while decreasing the left ventricular end-diastolic pressure (LVEDP). KR-31762 also significantly increased the time to contracture (TTC) during ischemic period (20.
View Article and Find Full Text PDFArch Pharm Res
May 2007
Department of Applied Biochemistry, Division of Life Science, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
To investigate the involvement of reperfusion-induced salvage kinases (RISK) as possible signaling molecules for the cardioprotective effects of BMS-180448, a prototype mitochondrial ATP-sensitive K+ (mitoK(ATP)) channel opener, we measured its cardioprotective effects in a rat model of ischemia/reperfusion (I/R) heart injury, together with western blotting analysis of five different signaling proteins. In isolated rat hearts subjected to 30-min global ischemia followed by 30-min reperfusion, BMS-180448 (1, 3 and 10 microM) significantly increased reperfusion left ventricular developed pressure (LVDP) and 30-min reperfusion double product (heart rate x LVDP) in a concentration-dependent manner, while decreasing left ventricular end-diastolic pressure (LVEDP) throughout reperfusion period in a concentration-dependent manner. SDS-PAGE/western blotting analysis of left ventricle reperfused for 30 min revealed that BMS-180448 significantly decreased phospho-GSK3beta at high concentration, whereas it tended to increase slightly phospho-eNOS and phospho-p70S6K with concentration.
View Article and Find Full Text PDFArch Pharm Res
January 2005
College of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea.
We evaluated the antiplatelet effects of two classes of ATP-sensitive potassium channel openers (K(ATP) openers) on washed human platelets, and the study's emphasis was on the role of mitochondrial K(ATP) in platelet aggregation. Collagen-induced platelet aggregation was inhibited in a dose dependent manner by lemakalim and SKP-450, which are potent cardio-nonselective K(ATP) openers, and also by cardioselective BMS-180448 and BMS-191095 (IC50: 1,130, >1,500, 305.3 and 63.
View Article and Find Full Text PDFOpening of the ATP-dependent K-channels (K(ATP) channels) upon intravenous administration of the cardioselective activator BMS 180448 (3 mg/kg) decreased the ventricular fibrillation threshold (VFT) in rats with postinfarction cardiosclerosis (PIC). Preliminary injection of the selective K(ATP) channel blocker glibenclamide (0.3 mg/kg, i.
View Article and Find Full Text PDFPharmacology
February 2004
Medicinal Science Division, Korea Research Institute of Chemical Technology, Daejon, Korea.
The cardioprotective effects of (2S,3R,4S)-N'-benzyl- N"-cyano-N-(3,4-dihydro-2-dimethoxymethyl-3-hydro- xy-2-methyl-6-nitro-2H-benzopyran-4-yl)-guanidine (KR-31372) were evaluated against ischemic/reperfusion injury in isolated rat hearts in vitro and in anesthetized rats and dogs in vivo. In isolated perfused rat hearts subjected to a 30-min global ischemia/30-min reperfusion, KR-31372 (1-10 microM) significantly improved severe contracture (end-diastolic pressure and time to contracture), markedly reduced reperfusion lactate dehydrogenase release, and enhanced the recovery of reperfusion contractile function (left ventricular developed pressure and double product) in a concentration-dependent manner compared with the vehicle-treated group. In anesthetized rats subjected to a 45-min coronary occlusion and a 90-min reperfusion, intravenous KR-31372 dose-dependently reduced infarct size from 58.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!