The elevated level of plasma low density lipoprotein (LDL) in hyperlipidemic patients is an important risk factor for the production of atherosclerosis. Plasma LDL must be modified before it can produce an impairment of endothelium-dependent relaxation in aortic rings or enhancement of uptake by macrophages. The dramatic increase in lysophosphatidylcholine (lysoPC) content in oxidatively modified LDL has been touted as an important biochemical factor for the impairment of endothelium-dependent relaxation. The present study was designed to examine the lysoPC composition of oxidized LDL samples from normal and hyperlipidemic subjects, and their effects on the impairment of endothelium-dependent relaxation. Oxidatively modified LDL from hyperlipidemic patients contained a slightly higher level (17%) of lysoPC, but produced a disproportionately greater impairment of endothelium-dependent relaxation than that from normal subjects. As lysoPC is composed of many molecular species, its composition in oxidized LDL samples was analyzed. In hyperlipidemic patients, lysoPC samples were found to contain a higher proportion of long-chain acyl groups. Subsequent studies revealed that only long-chain lysoPC (C > 16:0) were effective in impairing endothelium-dependent relaxation. Experimental loading of oxidized LDL from normal subjects with long chain lysoPC to mimic levels observed in oxidized LDL from hyperlipidemic patients resulted in further impairment of endothelium-dependent relaxation. We conclude that the greater proportion of long-chain lysoPC found in the oxidized LDL of hyperlipidemic subjects is responsible for the increased impairment of endothelium-dependent vascular relaxation. We propose that the high level of LDL found in the plasma of hyperlipidemic patients, coupled with its enhanced ability to generate long chain species of lysoPC during oxidative modification, are important factors for the development of atherosclerosis in these patients.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hyperlipidemic patients
24
impairment endothelium-dependent
24
endothelium-dependent relaxation
24
oxidized ldl
20
ldl hyperlipidemic
16
ldl
10
lysopc
9
oxidative modification
8
low density
8
density lipoprotein
8

Similar Publications

Preventing moderately severe and severe acute pancreatitis (MSAP & SAP) is the primary goal of the management of hyperlipidemic acute pancreatitis (HLAP). The main aim of this study was to investigate the factors affecting serum triglyceride (TG) clearance, particularly blood glucose (GLU) levels, which could potentially help to prevent the development of MSAP & SAP. The clinical data from 177 patients with MSAP & SAP and 195 patients with mild acute pancreatitis (MAP) on days 1-6 after the onset were collected and analyzed by multivariate logistic regression to identify the factors that have an impact on the severity of HLAP, especially TG.

View Article and Find Full Text PDF

Oxidative stress (OS) injury is pivotal in acute pancreatitis (AP) pathogenesis, contributing to inflammatory cascades. Irisin, a ubiquitous cytokine, exhibits antioxidant properties. However, the role of irisin in AP remains inconclusive.

View Article and Find Full Text PDF

Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality.

View Article and Find Full Text PDF

Objective: To determine the value of lymphocyte subsets and granulocyte/monocyte surface markers in predicting the risk of post-acute pancreatitis diabetes (PPDM-A).

Methods: This study included 308 in patients with acute pancreatitis (AP). The markers of granulocytes and monocytes and lymphocyte subsets were detected by flow cytometry, and the fluorescence intensity, absolute count and percentage were obtained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!