Using statistical methods the reconstruction of positron emission tomography (PET) images can be improved by high-resolution anatomical information obtained from magnetic resonance (MR) images. We implemented two approaches that utilize MR data for PET reconstruction. The anatomical MR information is modeled as a priori distribution of the PET image and combined with the distribution of the measured PET data to generate the a posteriori function from which the expectation maximization (EM)-type algorithm with a maximum a posteriori (MAP) estimator is derived. One algorithm (Markov-GEM) uses a Gibbs function to model interactions between neighboring pixels within the anatomical regions. The other (Gauss-EM) applies a Gauss function with the same mean for all pixels in a given anatomical region. A basic assumption of these methods is that the radioactivity is homogeneously distributed inside anatomical regions. Simulated and phantom data are investigated under the following aspects: count density, object size, missing anatomical information, and misregistration of the anatomical information. Compared with the maximum likelihood-expectation maximization (ML-EM) algorithm the results of both algorithms show a large reduction of noise with a better delineation of borders. Of the two algorithms tested, the Gauss-EM method is superior in noise reduction (up to 50%). Regarding incorrect a priori information the Gauss-EM algorithm is very sensitive, whereas the Markov-GEM algorithm proved to be stable with a small change of recovery coefficients between 0.5 and 3%.

Download full-text PDF

Source
http://dx.doi.org/10.1109/42.563658DOI Listing

Publication Analysis

Top Keywords

expectation maximization
8
reconstruction positron
8
positron emission
8
emission tomography
8
anatomical
8
anatomical magnetic
8
magnetic resonance
8
pixels anatomical
8
anatomical regions
8
algorithm
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!