Upon light adaptation by continuous (or pulsed) illumination, the artificial bacteriorhodopsin (bR) pigments, I and II, derived from synthetic 14F retinal and a short polyenal, respectively produce a long-lived red-shifted species denoted O1. An analogous phenomenon was observed by Sonar, S., et al. [(1993) Biochemistry 32, 2263-2271], in the case of the Y185F mutant (pigment III). The nature of these O1 species was investigated by studying a series of effects, primarily their red light photoreversibility, the associated proton uptake and release processes, and the effects of pH on their relative amounts, which are interpreted in terms of pH-dependent acid-base equilibria. Experiments were also carried out with pigments I and II derived from the mutants D96A, E204Q, R82Q, and D85N. The O1 species of pigments I and II (and possibly also that of pigment III) are identified as an unusually long-lived (all-trans) intermediate of the photocycle of their 13-cis isomer. It is concluded that in O1, Asp-85 is protonated, a process associated with proton uptake from the extracellular side. Subsequent proton release (to the same side of the membrane) occurs from Glu-204 (or from a group closely interacting with it) prior to the decay of O1. At high pH (>9), O1 reversibly converts to a purple form, due to deprotonation of Asp-85, while at still higher pH (> 11), a blue-shifted species characterized by a deprotonated Schiff base is generated. These transitions constitute the first demonstration of the titration of a photocycle intermediate of a retinal protein. The respective pKa values are determined and discussed in relation to those pertaining to the unphotolyzed (dark-adapted) pigments. It appears that the pKa values are controlled by a hydrogen bond network involving water molecules, which binds the protonated Schiff base with Asp-85 and Glu-204. The disruption of this network in pigments I-III may also be responsible for the long lifetime of the O1 species, due to the inhibition of thermal trans-13-cis isomerization. The results are relevant to the molecular mechanism of the photocycles of both 13-cis- and all-trans-bR, primarily to the nature and to the deprotonation mechanism of the proton-releasing group.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi962322eDOI Listing

Publication Analysis

Top Keywords

proton-releasing group
8
photocycle intermediate
8
pigments derived
8
pigment iii
8
associated proton
8
proton uptake
8
schiff base
8
pka values
8
pigments
5
species
5

Similar Publications

Rubrobacter xylanophilus rhodopsin (RxR) is a phylogenetically distinct and thermally stable seven-transmembrane protein that functions as a light-driven proton (H) pump with the chromophore retinal. To characterize its vectorial proton transport mechanism, mutational and theoretical investigations were performed for carboxylates in the transmembrane region of RxR and the sequential proton transport steps were revealed as follows: (i) a proton of the retinylidene Schiff base (Lys209) is transferred to the counterion Asp74 upon formation of the blue-shifted M-intermediate in collaboration with Asp205, and simultaneously, a respective proton is released from the proton releasing group (Glu187/Glu197) to the extracellular side, (ii) a proton of Asp85 is transferred to the Schiff base during M-decay, (iii) a proton is taken up from the intracellular side to Asp85 during decay of the red-shifted O-intermediate. This ion transport mechanism of RxR provides valuable information to understand other ion transporters since carboxylates are generally essential for their functions.

View Article and Find Full Text PDF

Uranium biosorption mechanism model of protonated Saccharomyces cerevisiae.

J Hazard Mater

March 2020

School of Environmental and Resources, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China. Electronic address:

Further understanding absorption uranium mechanism of the regenerational biosorbent is very interesting in application of the biosorbent. The regeneration adsorbent of Saccharomyces cerevisiae biomass was made by hydrochloric acid. Using it to absorb uranium at low constant pH(2.

View Article and Find Full Text PDF

A pKa calculation of residues in a proton pump, bacteriorhodopsin, from structures determined by electron crystallography.

Microscopy (Oxf)

November 2014

Technology Research Association for Next generation natural products chemistry, Japan Biological Informatics Consortium AIST Water Front 2-3-26 Aomi, Koto-ku, Tokyo, Japan, 135-0064.

Bacteriorhodopsin (bR) is a light-driven proton pump, which is a membrane protein found in halophilic archeae like Halobacterium salinarum and in eubacteria [1]. When the covalently bound retinal chromophore absorbs the light energy, it changes the conformation from all-trans to 13-cis. This configuration change initiates ion translocation across the cell membrane and a proton moves from inside to outside of the cell.

View Article and Find Full Text PDF

Metabolism establishes a potential difference across the cell membrane of every living cell which drives and regulates secondary ion and solute transfer across membrane proteins. Unraveling the effect of the membrane potential on the level of single molecular groups of the membrane protein was long hampered by the lack of appropriate analytical techniques. We have developed Surface Enhanced Infrared Difference Absorption Spectroscopy (SEIDAS), a highly sensitive vibrational technique for surface analysis, for the study of solid-supported monolayers of orientated membrane proteins.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the proton affinities of four functional groups in ofloxacin (OflH) by analyzing UV-vis absorption and fluorescence spectra in relation to pH changes and charge transfer complexes with p-bromanil and p-chloranil.
  • The inclusion of beta-cyclodextrin (beta-CD) affects the proton affinities of the anilinic and tertiary nitrogen atoms while leaving the acidic phenolic -OH and -COOH groups unchanged, indicating partial encapsulation of OflH within beta-CD.
  • The research establishes a relationship between pK(a) values and formation constants, helping to derive the formation constant of the OflH-beta-CD complex and identify which parts of the ofloxacin molecule are included in the beta-CD
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!