Modulation of endoplasmic reticulum calcium pump expression during T lymphocyte activation.

J Biol Chem

U348 INSERM, Institut Fédératif de Recherche Circulation Lariboisière, Hôpital Lariboisière, 8, rue Guy Patin, 75475 Paris Cedex 10, France.

Published: April 1997

Calcium mobilization from intracellular storage organelles is a key component of the second messenger system inducing cell activation. Calcium transport ATPases associated with intracellular calcium storage organelles play a major role in controlling this process by accumulating calcium from the cytosol into intracellular calcium pools. In this study the modulation of the expression of the sarco-endoplasmic reticulum calcium transport ATPase (SERCA) isoenzymes has been studied in lymphocytes undergoing phorbol myristate acetate and ionomycin-induced activation. In several T lymphocyte cell lines a combined treatment by the two drugs resulted in an approximately 90% decrease of the expression of the calcium pump isoform recognized by the PLIM430 isoform-specific antibody, whereas the expression of the SERCA 2b isoform was increased approximately 2-fold. Phorbol ester or ionomycin applied separately was ineffective. In Jurkat T cells the down-modulation of expression of the SERCA isoform recognized by the PLIM430 antibody appeared concomitantly with the induction of interleukin-2 expression and could be inhibited by the immunosuppressant drug cyclosporine-A. These data indicate that T cell activation induces a selective and cyclosporine-A-sensitive modulation of the expression of the SERCA calcium pump isoforms. This reflects a profound reorganization of the calcium homeostasis of T cells undergoing activation and may open new avenues in the understanding of the plasticity of the calcium homeostasis of differentiating cells and in the pharmacological modulation of lymphocyte function.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.16.10746DOI Listing

Publication Analysis

Top Keywords

calcium pump
12
expression serca
12
calcium
11
reticulum calcium
8
activation calcium
8
storage organelles
8
cell activation
8
calcium transport
8
intracellular calcium
8
modulation expression
8

Similar Publications

Mutational analysis of an antimalarial drug target, ATP4.

Proc Natl Acad Sci U S A

January 2025

Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129.

Among new antimalarials discovered over the past decade are multiple chemical scaffolds that target P-type ATPase (ATP4). This essential protein is a Na pump responsible for the maintenance of Na homeostasis. ATP4 belongs to the type two-dimensional (2D) subfamily of P-type ATPases, for which no structures have been determined.

View Article and Find Full Text PDF

Urolithin A Protects Hepatocytes from Palmitic Acid-Induced ER Stress by Regulating Calcium Homeostasis in the MAM.

Biomolecules

November 2024

Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.

An ellagitannin-derived metabolite, Urolithin A (UA), has emerged as a potential therapeutic agent for metabolic disorders due to its antioxidant, anti-inflammatory, and mitochondrial function-improving properties, but its efficacy in protecting against ER stress remains underexplored. The endoplasmic reticulum (ER) is a cellular organelle involved in protein folding, lipid synthesis, and calcium regulation. Perturbations in these functions can lead to ER stress, which contributes to the development and progression of metabolic disorders such as metabolic-associated fatty liver disease (MAFLD).

View Article and Find Full Text PDF

Deep dive into the diversity and properties of rhodopsins in actinomycetes of the family Geodermatophilaceae.

J Photochem Photobiol B

January 2025

All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Moscow Region, Russia.

In recent decades, most studies of microbial rhodopsins have focused on their identification and characterization in aquatic bacteria. In 2021, actinomycetes of the family Geodermatophilaceae, commonly inhabiting terrestrial ecosystems in hot and arid regions, have been reported to contain rhodopsins with DTEW, DTEF and NDQ amino acid motifs. An advanced bioinformatics analysis performed in this work additionally revealed NTQ rhodopsin and heliorhodopsins.

View Article and Find Full Text PDF

A new regulation mechanism for KCNN4, the Ca-dependent K channel, by molecular interactions with the Capump PMCA4b.

J Biol Chem

December 2024

Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France; Laboratory of Excellence for RBC, LABEX GR-Ex, 75015, Paris, France. Electronic address:

KCNN4, a Ca-activated K channel, is involved in various physiological and pathological processes. It is essential for epithelial transport, immune system and other physiological mechanisms but its activation is also involved in cancer pathophysiology as well as red blood cell disorders (RBC). The activation of KCNN4 in RBC leads to loss of KCl and water, a mechanism known as the "Gardos effect" described seventy years ago.

View Article and Find Full Text PDF

Mucociliary clearance (MCC) is a host defense mechanism of the respiratory system. Beating cilia plays a crucial role in the MCC process and ciliary beat frequency (CBF) is activated by several factors including elevations of the intracellular cAMP concentration ([cAMP]), intracellular Ca concentration ([Ca]), and intracellular pH (pH). In this study, we investigated whether an artichoke-extracted component cynaropicrin could be a beneficial compound for improving MCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!