Wnt genes encode a family of secreted glycoproteins that modulate cell fate and behavior in embryos through activation of receptor-mediated signaling pathways. Wnt sequences, patterns of expression and activities are highly conserved in evolution, so it has been possible to gain insights into the functions, and mechanisms of action, of the Wnt genes through a synthesis of genetic and cell biological approaches in different organisms. These studies suggest that there are functionally distinct WNT proteins as assayed by the ability to transform cells and by differences in embryonic responses to ectopic WNT signals. Moreover, gain-of-function and loss-of-function studies both support the involvement of Wnt proteins in modulating cell fate and cell behavior during vertebrate development, often through combinatorial interactions with other signaling pathways to regulate gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0168-9525(97)01093-7DOI Listing

Publication Analysis

Top Keywords

cell fate
12
modulate cell
8
fate behavior
8
behavior vertebrate
8
vertebrate development
8
wnt genes
8
signaling pathways
8
wnt proteins
8
wnt
6
cell
5

Similar Publications

Telocytes in inflammatory bowel diseases: contributions to pathology and therapeutic potentials.

Front Cell Dev Biol

January 2025

Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, United States.

Telocytes, a novel mesenchymal cell population, are characterized by their distinctive long and slender projections known as telopodes and have garnered significant interest since their formal introduction to the literature in 2010. These cells have been identified in various tissues, including the gastrointestinal (GI) tract, where they are suggested to play important roles in maintaining structural integrity, immune modulation, and barrier function. Inflammatory bowel diseases (IBD), which include Crohn's disease (CD) and ulcerative colitis (UC), are characterized by chronic inflammation and fibrosis.

View Article and Find Full Text PDF

The fate mapping technique is essential for understanding how cells differentiate and organize into complex structures. Various methods are used in fate mapping, including dye injections, genetic labeling (e.g.

View Article and Find Full Text PDF

Colorectal cancer (CRC), one of the most common tumors in the world, is generally proposed to be generated from intestinal stem cells (ISCs). Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)-positive ISCs are located at the bottom of the crypt and harbor self-renewal and differentiation capacities, serving as the resource of all intestinal epithelial cells and CRC cells as well. Here we review recent progress in ISCs both in non-tumoral and tumoral contexts.

View Article and Find Full Text PDF

Deciphering the dynamic single-cell transcriptional landscape in the ocular surface ectoderm differentiation system.

Life Med

October 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China.

The ocular surface ectoderm (OSE) is essential for the development of the ocular surface, yet the molecular mechanisms driving its differentiation are not fully understood. In this study, we used single-cell transcriptomic analysis to explore the dynamic cellular trajectories and regulatory networks during the differentiation of embryonic stem cells (ESCs) into the OSE lineage. We identified nine distinct cell subpopulations undergoing differentiation along three main developmental branches: neural crest, neuroectodermal, and surface ectodermal lineages.

View Article and Find Full Text PDF

Decrease of NAD Inhibits the Apoptosis of OLP T Cells via Inducing Mitochondrial Fission.

J Inflamm Res

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.

Purpose: Oral lichen planus (OLP) is a chronic, immune-mediated inflammatory disease involving T cells. Mitochondrial fission plays a crucial role in T cell fate through structural remodeling. Nicotinamide adenine dinucleotide (NAD) regulates mitochondrial remodeling and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!