The understanding of neurotransmitter release at vertebrate synapses has been hampered by the paucity of preparations in which presynaptic ionic currents and postsynaptic responses can be monitored directly. We used cultured embryonic Xenopus neuromuscular junctions and simultaneous pre- and postsynaptic patch-clamp current-recording procedures to identify the major presynaptic conductances underlying the initiation of neurotransmitter release. Step depolarizations and action potential waveforms elicited Na and K currents along with Ca and Ca-activated K (KCa) currents. The onset of KCa current preceded the peak of the action potential. The predominantly omega-CgTX GVIA-sensitive Ca current occurred primarily during the falling phase, but there was also significant Ca2+ entry during the rising phase of the action potential. The postsynaptic current began a mean of 0.7 msec after the time of maximum rate of rise of the Ca current. omega-CgTX also blocked KCa currents and transmitter release during an action potential, suggesting that Ca and KCa channels are colocalized at presynaptic active zones. In double-ramp voltage-clamp experiments, KCa channel activation is enhanced during the second ramp. The 1 msec time constant of decay of enhancement with increasing interpulse interval may reflect the time course of either the deactivation of KCa channels or the diffusion/removal of Ca2+ from sites of neurotransmitter release after an action potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6573664PMC
http://dx.doi.org/10.1523/JNEUROSCI.17-09-02990.1997DOI Listing

Publication Analysis

Top Keywords

action potential
20
neurotransmitter release
16
kca currents
8
msec time
8
release action
8
kca channels
8
kca
6
currents
5
release
5
action
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!