A specific plasma level assay for the enantiomers of alpha-lipoic acid is described. It makes use of liquid-liquid extraction, chemical reduction to the dithiol enantiomers, and their precolumn chiral derivatisation with o-phthalaldehyde in the presence of D-phenylalanine. The two diastereomeric derivatives are separated by reversed-phase HPLC with fluorescence detection. The working range of the assay is between 15 ng/ml (lower limit of quantitation) and 1,000 ng/ml for either enantiomer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1520-636X(1997)9:1<32::AID-CHIR7>3.0.CO;2-IDOI Listing

Publication Analysis

Top Keywords

enantioselective high-performance
4
high-performance liquid
4
liquid chromatography
4
chromatography assay
4
assay +r-
4
+r- -s-alpha-lipoic
4
-s-alpha-lipoic acid
4
acid human
4
human plasma
4
plasma specific
4

Similar Publications

High-performance anionic stereogenic-at-cobalt(III) complex/halide salts/oxone catalytic system for enantioselective halocyclization of olefins.

Chem Commun (Camb)

January 2025

Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.

A high-performance anionic stereogenic-at-cobalt(III) complex/oxone catalytic system was developed for various enantioselective intramolecular halocyclizations of olefins using halide salts as halogen sources, delivering structurally diverse halogenated heterocyclic compounds with outstanding stereoselectivity (up to 97 : 3 e.r.).

View Article and Find Full Text PDF

D-Histidine modulated chiral metal-organic frameworks for discriminating 3,4-Dihydroxyphenylalanine enantiomers based on a chemiluminescence quenching mode.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:

Background: Drug enantiomers often display distinguishable or even opposite pharmacological and toxicologic activities. Therefore it is of great necessity to discriminate enantiomers for guaranteeing safetyness and effectiveness of chiral drugs. Facile chiral discrimination has long been a noticeable challenge because of the minimal differences in physicochemical properties of enantiomers.

View Article and Find Full Text PDF

The joint use of deep eutectic solvents (DESs) and cyclodextrins (CDs) has been well demonstrated to have a promoting effect on chiral separation in capillary electrophoresis (CE). These studies focused on constructing synergistic separation systems by adding DESs and CDs to the buffer solution respectively. In this work, for the first time, β-cyclodextrin (β-CD), methyl-β-cyclodextrin (M-β-CD), and hydroxypropyl-β-cyclodextrin (HP-β-CD) were directly used as precursors to prepare several CDs-based deep eutectic supramolecules (DESUPs) by assembling with two organic acids (L-lactic acid and L-malic acid) in different ratios through a simple two-phase mixing.

View Article and Find Full Text PDF

First separation of commendamide enantiomers.

J Pharm Biomed Anal

March 2025

Institute of Biomolecular Chemistry ICB, CNR, Traversa La Crucca 3, Regione Baldinca, Li Punti, Sassari 07100, Italy. Electronic address:

N-(3-hydroxyacyl)glycines are compounds of remarkable interest due to their biogenic origin and bioactivity and as precursors of the corresponding 3-acyloxy derivatives which represent an important class of bioactive products of bacterial origin. Commendamide [N-(3-hydroxypalmitoyl)glycine] (1) is a gut microbiota-derived bioactive metabolite that is structurally like endogenous long-chain N-acyl-amino acids belonging to the endocannabinoidome, a complex lipid signaling system involved in several aspects of mammalian physiology and pathology. Thanks to this structural similarity, this compound and its analogues, like the N-(3-hydroxymyristoyl)glycine 2, exert a remarkable bioactivity in mammals, for instance, through activation of G-protein-coupled receptors (GPCRs).

View Article and Find Full Text PDF

Enantiomerically Pure Helical Bilayer Nanographenes: A Straightforward Chemical Approach.

J Am Chem Soc

December 2024

Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.

Article Synopsis
  • - The study highlights the potential of molecular nanographenes for next-gen optoelectronics, particularly focusing on chiral versions that show unique optical properties but are challenging to synthesize in pure forms.
  • - Traditional methods for obtaining chiral nanographenes involve costly HPLC for separating racemic mixtures, while only limited examples of direct enantioselective synthesis exist in literature.
  • - The authors propose a simpler chemical method for chiral resolution of helical bilayer nanographenes, utilizing BINOL and camphorsulfonyl chloride, leading to scalable production of enantiomerically pure nanographenes without relying on HPLC.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!