In previous studies we have described a 5.0 kb Hin dIII fragment downstream of muscle exon 1 that exhibits properties consistent with a muscle-specific transcriptional enhancer. The goal of this study has been to identify the sequence elements responsible for muscle-specific enhancer activity. Functional studies indicated that this enhancer is active in pre- and post-differentiated H9C2(2-1) myoblasts but functions poorly in L6 and C2C12 myotubes. The core enhancer region was delimited to a 195 bp Spe I- Acc I fragment and sequence analysis identified three MEF-1/E box and two MEF-2/AT-rich motifs as potential muscle-specific regulatory domains. EMSA competition and DNase footprinting indicated that sequences within a 30 bp region containing single adjoining MEF-1/E box and MEF-2/AT-rich motifs are target binding sites for trans -acting factors expressed in H9C2(2-1) myotubes but not in L6 or C2C12 myotubes. Site-specific mutations within these motifs resulted in a significant reduction in enhancer activity in H9C2(2-1) myotubes. These results suggest that the mechanisms governing DMD gene expression in muscle are similar to those identified in other muscle-specific genes. However, the myogenic profile of enhancer activity and trans -acting factor binding suggests a more specialized role for this enhancer that is consistent with its potential involvement in dystrophin gene regulation in cardiac muscle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC146611 | PMC |
http://dx.doi.org/10.1093/nar/25.8.1618 | DOI Listing |
Nucleic Acids Res
April 1997
Division of Experimental Therapeutics, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
In previous studies we have described a 5.0 kb Hin dIII fragment downstream of muscle exon 1 that exhibits properties consistent with a muscle-specific transcriptional enhancer. The goal of this study has been to identify the sequence elements responsible for muscle-specific enhancer activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!